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However, there is no clear analysis, based on this 
architecture and the project methodology, of what 
specific (logical) datasets are required.  

 

The “readiness” of datasets for the project cannot 
be determined without this. 

 

Responses and changes 

1. Page 13 summarises responses to the 
issues above. They are in this location, as 
fixes are in relation to the functional 
architecture. 

2. Page 19-20, Table 2 shows the minimum 
setup for ROADVIEW. The sensor setup 
will have a bearing on the quality, hence 
its inclusion and helps explain the 
methodology. 

3. Page 21, Table 3 has been expanded to 
show which tools we are using to derive 
the DRLs for image and LiDAR quality. 

4. Page 23, Figure 7 has been added for 
clarity. 

5. Pages 30-31 explains the use of DRLs in 
some detail. This exemplifies the 
readiness of datasets in concrete terms. 

6. Page 31, Figure 12 is new to show the 
route taken in FGIs rural journey. FGI is 
the Finnish Geospatial Institute’s dataset. 

7. Page 33, Figure 14 shows the DRL 
applied to FGI dataset. 

8. Page 34, a summary of DRLs and work 
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9. Page 50, a new reference. 
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Executive summary 

The outcome of this deliverable is a description of the data readiness levels (DRLs) in the ROADVIEW project. 

Essentially DRLs are the data ‘equivalent’ of Technical Readiness Levels (TRLs). Specific is included in the title 

means internally (generated) and externally (available) datasets for autonomous driving. As well as the datasets we 

introduce the concept of data readiness levels and how the levels are implemented. DRLs are a general concept for 

differing data kinds, that said, we will use our own collated metrics for the specifics related to autonomous driving 

initially. Data quality detractors are not solely sensor related, non-domain aspects, missing data, corrupted values, 

processing errors are generic problems in data processing and can lead to insufficient HD map quality and therein 

can miss important objects in the test drives. We do not provide a DRL value for the datasets in this deliverable, as 

LiDAR and RADAR data has not been evaluated in sufficient detail, but we provide a roadmap for LiDAR evaluation. 

Clearly, data for autonomous driving is an enormous area crossing many disciplines, vision, ML, metrological, 

measurement techniques, sensing, instrumentation, and we do not attempt to cover all these topics however provide 

a slice through the topic with an example of image quality. 

 

Objectives 

The main objective of this deliverable is a report on how to quantitatively evaluate the Data Readiness Levels (DRL) 

of datasets. With the help of this deliverable, we aim to assign a score, 1 (low) to 9 (high) of a specific dataset we 

have available to us. Datasets can be ROADVIEW partner produced (page 20) or openly available ones (page 24). 

The final project goal is the ability to upload a dataset and an evaluation thereof of that data for autonomous driving.  

 

 

Methodology and implementation 

The main methodology followed is to define a simple, working assessment of the datasets used in ROADVIEW. 

Irrespective of the algorithms’ performance (F-Scores, Confusion matrices and so on) the success of autonomous 

vehicles will largely depend on the quality of data used. Therefore, the data should be of sufficient quality for the 

scenarios and settings defined in the project. Since the goal of the project is to enable autonomous vehicles to 

operate in rain and snow, the coverage, quality, and settings will be a determining factor in the projects’ success. 

Also, quantitively, where the operation of the vehicle perception is too low, we can pinpoint at least where the data 

is/was insufficient using the main concept. Backtracing from an object misclassification (or missing at all) to the HD 

MAP, data source (Visible camera, Infra-red, LiDAR, RADAR) to the pixels and potentially a sensor issue would be 

a truly valuable tool in this field, akin to a debugger in software development.  

 

Outcome 

The outcome of this first deliverable on this topic is an overview of the domain of road sensor fused simple. It is more 

of an informational type of deliverable, however, with concrete examples from internal and external datasets. 

 

Next steps 

The next steps are to continue the development of the DRL concepts and obtain a RADAR set for the same datasets. 

We will also assess the public datasets in further detail, by adding additional quality metrics. Assessments must be 

developed or in the public domain. The external datasets in our focus are nuScenes and mmDetection3D.  
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Part I: Preliminaries 

What’s in this deliverable? 

Essentially this deliverable contains an evaluation of internally produced and publicly available datasets for 

autonomous driving. An emphasis is on scenes with poorer driving conditions. How driving conditions impacts on 

sensor performance and subsequent data flows is also addressed. An end-to-end software example is used as an 

illustration. VISIBLE and thermal cameras are considered, RADAR and ultrasonic sensors less so.  

What’s not in this deliverable? 

Some issues are not included in this deliverable, on is sensor calibration, cameras and LiDARs (though LiDAR 

calibration can be found in this Link). This is mostly due to the competence area, as well as access to specialised 

equipment. We will also not discuss issues in ROADVIEW available in other Work packages and deliverables 

however are related to datasets. Examples include ODDs (WP2, Task 2.1) and the Data Management Plan but (WP1, 

T1.4) refer to other work packages and tasks within ROADVIEW. RADAR data is not discussed in detail this 

deliverable, again due to competence in this task and data at a timely point. It will be covered in future dataset 

evaluation.  

Data in ROADVIEW: a perspective 

Introduction 

In this first deliverable (of 3) on data quality, we split the initial data readiness into 3 sections:   

1. Introduce data readiness concepts.  

2. The data details about the data set(s) for assessment.   

3. Highlight practicalities around storage, processing, formats, sizes, and costs. 

 

 

 

Figure 1 - Data plays a central role in the many projects. Above, is a generic view of data of the data processing stages. 

The lower DRLs are processed bottom first. A specific DRL illustration is in Fig. 8.   

https://www.asprs.org/wp-content/uploads/Lidar_Guidelines_3-19-2018.pdf
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The big (data) picture 

We look at the increasing role of data in computer-based tasks. Taking a step back computer science works on some 

simple principles. Although many computer scientists developed these, the idea of splitting the thinking process into 

Data and Control was coined by Alfred Aho (still lectures at 82 years old at Columbia University) of AWK fame). 

These are shown below. Looking back, the amount of data processed was much less than now and the focus was 

on controlling the program to achieve complex tasks. Data was typically input → processed → output. 

 

Programs = Control + Data 

 

As key algorithms (many formalised and popularised by Knuth) development of the algorithms, especially their 

complexity became key. Control flow became algorithms, which can be used again and again in different contexts. 

Again, the separation of the data and the algorithms is a key philosophy. Many systems and programs today could 

benefit from working code to a specific (well known) algorithm that can be changed or improved. Searching and 

sorting being the classics. 

 

Application = Algorithms + Data 

 

Jumping forward a few decades in computer science, a key change has been the use of large amounts of data. This 

jump in huge data amounts is not only related to Machine Learning and AI, but gathering data from our environment, 

roads, earth observations, Internet logs, nuclear particles and so on. Whence scanning, capturing, measuring our 

environment (at whatever timescale or physical dimensions) data has become pervasive. In autonomous driving, 

sensing, gathering, processing, validating, (even legalising) data is so important, it is almost the most important facet 

of a project such as ROADVIEW. We do not demean the algorithms or computer science; however, the roll of data 

is of uppermost attention in projects such as ROADVIEW. It is logical that the quality of the data, should be and is an 

important part of the project. 

 

Autonomous driving = Algorithms + Training Data + Testing Data + Testing 

 

Therefore, ROADVIEW will (i) introduce a novel concept of sensor denoising to filter out noisy sensor readings 

(camera, LiDAR, and RADAR) and (ii) assign a data readiness level to validate the quality of the raw data before 

passing them to the perception modules. This will lead to more robust perception under varying environments and 

weather conditions. In terms of assessment, we need to stipulate that in image and video quality for ML processing 

(pipelines) introduces new and different issues when quality assessment is for people. This we will come back to 

when discussing the VISIBLE image and video quality.  
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The ROADVIEW reference architecture (a summary of D2.3) 

The work in this task is in essence adjunct to the architecture work done in the Architecture Reference Task, part of 

WP2. Figure 2 below shows the generic architecture ROADVIEW uses. It represents the core functional generic 

architecture of the ROADVIEW project. Novel ROADVIEW modules are shown in dark grey, and available OEM 

modules in light grey colours, respectively. There are 3 functionalities: Perception, Planning, and Control in red, 

purple, & blue.   The perception block functions are for robust environment perception. Basically, filtering of noisy 

sensor data, low-level sensor fusion, object detection, free-space detection, weather-type detection, slipperiness 

detection, and visibility detection. The perception block receives input from various sensing modalities such as RGB 

cameras, LiDARs, RADARs, Thermal cameras, Inertial Measurement Units (IMU), and Global Navigation Satellite 

System (GNSS) modules. The planning block is for localisation, trajectory prediction & planning functionalities. The 

controller block focuses on weather-aware decision-making and control of the velocity and acceleration-related 

parameters. Each sensor reading is processed individually up to the low-level sensor fusion module, which feeds the 

downstream perception modules such as object detection. Dashed arrows in the figure represented sensor readings 

cleaned from noise (i.e., outliers) introduced by, for instance, falling snow particles or rain drops.  

 

 

Figure 2 - The ROADVIEW reference architecture (source D2.3) 
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The reference architecture in Figure 2 drives our Readiness Level development. Table 3 shows the DRLs, and the 

sensor calibration and synchronisation above correspond to level 0 in our DRLs. That is before data is gathered, and 

per modality, the calibration needs to be done. We mean extrinsic calibration with respect to calibration in this case. 

Data filtering maps to data quality assessment in our DRL schema, that is levels 2-7. These are described in more 

detail below with an example. We do not look at the quality of the fused modalities in DRL in this first report, rather 

per modality.    

The project methodology with respect to data is to find the best from each dataset and as a final dataset release a 

ROADVIEW dataset. Indeed, one of the objectives of ROADVIEW is ‘stamp’ the dataset with a quality value from 1 

(lowest) to 9 (highest). We need to state here, the value attributed to a dataset, or indeed amalgamation should not 

be used to compare datasets at this stage. That is because the setup, calibrations, vehicles, conditions will not be 

the same from dataset to dataset. However, we will look at being able to provide DRL scores per configuration, in 

the latter parts of this Task. 

There are no specific datasets required to assess the quality, nor specific modalities. Should there be more than 1 

device type we will initially average over the values, and if a modality is missing, their contributions or weights are 

simply reassigned to the existing modalities.  

 

Data sources in autonomous driving 

From a dataset point of view the simplest view of the project is: 

 

Data in ROADVIEW project   =  VISIBLE Camera data +  

Thermal Cameras +  

LiDAR data +  

RADAR data +  

IMU sensor positioning data +  

GNSS data 

 

To be clear, the project is large, complex and has many facets, weather modelling, testing, system integration, testing 

and finally working demonstrations using real trucks. That said, a vehicle that uses sensors to navigate, avoid and 

find its destination with respect to the road and weather conditions will be make heavy use of data, especially in the 

training phase. That is where the test vehicle performs journeys (see below) to learn of all possible situations it will 

encounter when licensed and driving passengers around. The goal from autonomous driving is to produce a “picture” 

of the environment, often called an HD map. In ROADVIEW this is discussed in additional detail in Tasks T5.4 and 

T8.3. 
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Part II: Sensors and data 

Brief overview of the sensor types in the ROADVIEW project  

To design and operate a vehicle in harsh weather environments, a number of sensors, platforms and processing is 

needed. Below we give a high-level overview, mostly for the laymen. A complete system requirement has been 

produced in WP2, the preparation of the demonstrators, a complete list can be found in WP2 system requirements 

document. Table 1 below gives a general overview of the sensor types and some characteristics.  

 

 

Table 1 - Simple summary of sensors in autonomous driving  

(source: An Overview of Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions. Sensor [28]) 
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VISIBLE CAMERAS 

Obviously, a key component in vehicle autonomy. Most cameras can be classified as visible or infrared (IR). VIS 

cameras such as monocular vision and stereo vision capture wavelengths that ranges from 400 to 780 nm, similar 

to human vision. They are mostly used due to their low cost, high resolution, and their capability to differentiate 

between colours. Combining two visible cameras with a predetermined focal distance allows stereo vision to be 

performed; hence, a 3D representation of the scene around the vehicle is possible. However, even in a stereoscopic 

vision camera system, the estimated depth accuracies are lower than the ones obtained from active range finders 

such as RADARs and LiDARs. Figure 3 shows two visible light cameras used in ROADVIEW Sekonix SF3324 and 

the Entron F008A030RM0A, images of the two, with specifications, are in the screenshots below. 

 

  

Figure 3 - Two visible light cameras used in the ROADVIEW project  

 

THERMAL CAMARAS 

Thermal cameras, also known as infrared (IR) cameras, detect infrared radiation, which is essentially heat that 

objects emit. This makes them different from typical cameras used in autonomous driving systems, which capture 

visible light. Thermal cameras can offer advantages over normal cameras in night vision, adverse weather, enhanced 

object detection, reduced false positives and improved braking, detecting living objects rather than non-living. 

ROADVIEW has access to an Adasky LW Infra-Red Vıper camera. A whitepaper about thermal cameras and the 

product is at link.  

 

RADARS 

Specifications: RADARs use radio waves in the 5-130GhZ range. RADAR is often classified into short range (~30m) 

and long range (>150m). The short radars use the 24 GHz ISM band from 24.0 to 24.25 GHz with a bandwidth of 

250 MHz, also called as the narrowband (NB). Long-range radars (LRR) use the 77 GHz band, 76-81GHz, to provide 

better accuracy and resolution in a smaller package. Long range applications need directive antennas that provide a 

higher resolution within a more limited scanning range.  

They are used for measuring the distance to, speed of other vehicles and detecting objects within a wider field of 

view e.g., for cross traffic alert systems.   ROADVIEW has access to a Continental ARS 408-21, data sheet. According 

to the data sheet the ARS 408-21 and offers anti-collision protection, headway for far-field objects, has non-radar 

reflecting detection, can classify 120 objects per cluster and has distance and speed monitoring. ROADVIEW also 

has access to ZF’s Pro Wave, with up to 350 m detection range, and 192 channels at 77 GHz. Figure 4, again, shows 

screenshots with illustrations and specifications. 

https://www.adasky.com/wp-content/uploads/2019/04/ADASKY1.pdf
https://conti-engineering.com/components/ars-408/


 

Deliverable No. D4.5  Title  

Version 04   Initial readiness assessment of specific datasets 

Project no. 101069576 

 

 

Page 16 of 49 
 

 

 

  

Figure 4 - Two RADAR modules used in the ROADVIEW project  

LIDARs 

For the uninitiated, LiDAR devices use scanning lasers (invisible light @ 330ThZ, 1550 nm) to detect objects from a 

close distance to several hundred meters away, some in a 360-degree field of view. The units need to reliable for the 

harsh conditions of the road, rain, dust, and variable lighting, vibration, pollution and so on. They can produce a point-

cloud ‘image’ of the scene around the vehicle. Often several are positioned to cover all areas around the vehicle. 

They generate a lot of information 5630 Kbytes per min (see Table 1 below), this can be lessened by using lower 

frame rates. In harsh weather the laser beams can become scattered or attenuated. FGI has access to the Velodyne 

VLS-128, released in 2017, link. It has 360 horizontal view (in the horizontal plane) and 40 degrees vertical. The 

range is 245 meters and has 0.11 minimum degrees angular. It generates 4.8 million points per second. Carissma 

has access to i) InnovizOne, released in 2023, has 0.1x0.1 angular resolution, 10 or 15 frame rate, 1 to 250 detection 

range, 115x24 degree field of view and is ISO 26262 compliant, ii) an Ouster OS1, with a 90–200-meter range, 45-

degree vertical field of view, 128 channels and 5.2 million points per second. Figure 5 shows the 2 Velodyne sensors. 

 

 

Figure 5 - Two LiDAR modules used in the ROADVIEW project  

 

 

https://velodynelidar.com/press-release/velodyne-lidar-launches-vls-128-the-worlds-highest-resolution-lidar-for-autonomous-vehicles/
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Ultrasound 

Ultrasonic sensors are used for close distance obstacle recognition such as parking assistance. The reach of the 

sensors is typically limited to 50cm, and they are not giving you any obstacle information than the distance. And even 

given that, they are not as accurate as the other sensors. Pricewise, ultrasonic sensors are very low cost and in 

nearly every car today as parking assistance. Due to not getting any obstacle information from the ultrasonic sensor, 

it is not possible to classify an obstacle. Therefore, ultrasonic sensors are not taken into consideration in ROADVIEW. 

Credit for this information goes to Joachim Glass at Konrad-Technologies (KO). 

Internal Measurement Units (IMU) 

 

Figure 6 - An IMU unit 

 

The Inertial Measurement Unit or IMU consists of two sensors: An accelerometer and gyroscope. The accelerometer 

measures the linear acceleration whereas the gyroscope measures the angular velocity. With a known starting 

location and precise acceleration measurements, the IMU provides information on current vehicle location and 

orientation. The IMU is the only sensor technology that is independent of any information from the visual or radio 

spectrum. The performance of IMU is limited only by the accuracy of acceleration measurements of the sensor itself. 

Unlike sensors such as cameras and LiDAR’s, an IMU can be installed to a shielded container, deep into the vehicle’s 

chassis. ROADVIEW has access to several IMUs. Figure 6 shows an IMU used by Sensible4, Finland. 

GNSS 

GNSS is the most widely used technology for providing accurate position information on the surface of the earth. The 

best-known GNSS system is the Global Positioning System (GPS), which is a U.S. owned utility that provides users 

with positioning, navigation, and timing (PNT) services. The operating principal the ability of the receiver to locate at 

least four satellites, calculate the distance to each & identify the receiver location using trilateration. GNSS signals 

suffer from several errors that degrade the accuracy, such as: (1) timing errors due to differences between the satellite 

atomic clock and the receiver quartz clock, (2) signal delays due to propagating through the ionosphere and 

troposphere, (3) multipath effect, and (4) satellite orbit uncertainties. To improve the accuracy of current positioning 

systems on vehicles, data from satellites are merged with data from other vehicle sensors to achieve reliable position 

information. In the ROADVIEW project we use Novatel Span-IGM-A1 and the XSenseMTI-710-2A8G4 GNSS 

sensors. 
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Sensor  
Used in / Required for ROADVIEW 

Innovation  
Parameter  

ROADVIEW minimum 
sensor requirement  

RGB Camera  

Data Filtering  
Low-Level Sensor Fusion  

Object Detection  
Free Space Detection  

Weather-Type Estimation  
Slipperiness Estimation  

Visibility Estimation  

Number of Sensors  >= 3  

Field of View  TBD  

Resolution  >= 2MP  

Framerate (Hz)  >= 10  

Sensor Model  RGB Camera  

Placement  
Front, (Rear optional), both 

Sides  

LiDAR  

Data Filtering  
Low-Level Sensor Fusion  

Object Detection  
Free Space Detection  

Weather-Type Estimation  
Slipperiness Estimation  

Visibility Estimation  
HD Mapping  

Localization with HD Mapping  

Number of Sensors  >= 1  

Field of View  
360° horizontal  
>= 40° vertical  

Resolution  128 bin  

Framerate (Hz)  >= 10  

Measurement Range (m)  >= 80  

Sensor Model  No Requirement  

Placement  
Top  

(to minimize obstacles)  

RADAR  

Data Filtering  
Low-Level Sensor Fusion  

Object Detection  
Free Space Detection  

Weather-Type Estimation  
Visibility Estimation  

Number of Sensors  >= 1  

Field of View  TBD  

Resolution  TBD  

Framerate (Hz)  >= 10  

Measurement Range (m)  >= 100  

Sensor Model  No Requirement  

Placement  Front  

Thermal 
Camera  

Low-Level Sensor Fusion  
Object Detection  

Free Space Detection  
Weather-Type Estimation  

Slipperiness Estimation  

Number of Sensors  >= 1  

Field of View  TBD  

Resolution  TBD  

Framerate (Hz)  >= 10  

Sensor Model  No Requirement  

Placement  Front  

GNSS  
HD Mapping  

Localization with HD Mapping  

Number of Sensors  1  

Framerate (Hz)  >= 10  

Sensor Model  No Requirement  

Placement  Antenna on Top  

IMU  
HD Mapping  

Localization with HD Mapping  

Number of Sensors  1  

Framerate (Hz)  >= 100  

Sensor Model  No Requirement  
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Placement  No Requirement  

Table 2- Minimum requirements on ROADVIEW sensor set, being defined in Task 4.1. The Data Readiness Level will be 

dependent on the setup, this is one example of what a setup will be. 

 

 

HD Mapping 

An HD (High Definition) map is a detailed and highly accurate digital representation of the real-world environment, 

primarily developed for autonomous driving systems. These maps go beyond the traditional navigation maps that we 

use in our smartphones or cars. Here's what distinguishes HD maps from standard maps: 

• Detail and Precision: HD maps provide centimetre-level precision, enabling self-driving cars to understand 

their surroundings better and make informed decisions. 

• Layers: Unlike standard maps that might only provide roads and points of interest, HD maps come with 

multiple layers of information, including: 

• Road Profile: This includes details like road curvature, gradient, and width. 

• Lane Information: It offers specifics about each lane, its boundaries, type (e.g., turning lane, straight lane), 

and associated rules. 

• Traffic Signs & Signals: HD maps will have exact positions of all traffic signs, signals, and other regulatory 

markers. 

• Infrastructure Details: This may include crosswalks, barriers, guardrails, pedestrian areas, and more. 

Dynamic Updates: Given the rapidly changing nature of roads due to construction, accidents, or other events, it's 

crucial for HD maps to be frequently and dynamically updated. Some systems aim to update in near real-time. 3D 

Representation: While many standard maps offer 3D views for a better user experience, HD maps can provide a true 

3D representation, accounting for elevation changes and including structures like bridges, tunnels, and buildings. 

Sensors & Integration: HD maps are typically developed considering the suite of sensors (like LIDAR, radar, cameras) 

on autonomous vehicles. The data from these sensors can be cross-referenced with HD maps for tasks such as 

precise localisation. HD maps play a crucial role in making autonomous driving safer and more reliable. By giving 

vehicles, a comprehensive understanding of their environment, they help ensure that the vehicle can handle complex 

driving scenarios even if sensors face temporary obstructions or difficulties. 

 

A ROADVIEW data pipeline 

Requirements (WP2)  Sensor capture (WP4)  Format wrangling (WP4)  Validation 

checks (WP4)  Fused data (WP4)  Model training (WP5)  Object detection (WP5) 
 

Data readiness, or quality can be defined for the online or offline case. In the online case could be a situation that 

was not anticipated or not seen before causing the vehicle to make a poor decision (the classic Über vehicle crash 

in the US, unfortunately killing a pedestrian). The offline case is pertinent to highlighting of internal practices, where 

the software system can be “debugged” from a data point of view. Should object detection fail we can look at the 

causes due to data issues. Note, the algorithms themselves could be issue. These should be tested on a ‘perfect 

dataset’ possibly machine generated (see below).   
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Data quality & autonomous vehicles: a short (& selected) state of the art 

Since autonomous vehicles are essentially ‘computers on wheels’ data gathering, processing & navigating there is a 

substantial amount of material. Often citating each sensor type, and increasingly more often, fused data. The 

photometric society of America produced a paper at the link about Geometric Inter-Swath Accuracy and Quality of 

LiDAR Data, which is not related to driving but an interesting take on LiDAR data quality. Data quality issues can be 

found in [1-3]. Within the consortium [4-6] cover vehicle segmentation in LiDAR point clouds. Adverse weather 

autonomous driving is in [7-13]. Each public datasets have its own set of publications, where nuScenes and 

mmDetection3D attempt to summarise the others, NuScences ‘corruptions’ a method is close to our work [20]. 

Around ML pipelines references [15-18] are relevant, where we point to [15] as a lightweight approach. [14] is video 

quality estimation done by video quality experts, rather than vehicle developers or ML specialists.  

 

Data quality for autonomous vehicles: image quality 

A key aspect in this project is the use of multiple sensors in adverse or poor weather conditions. It is anticipated that 

driving in conditions with non-differentiating backgrounds, water particles in the air (attenuating sensors) make it 

more difficult for the vehicle to assess surrounding obstacles and obstructions. Visible image quality issues come 

from lack of sharpness due to focus or dirty sensors, blurriness from lack of focus, confusing ranges and even the 

speed of the measurement vehicle itself. Obviously over exposed images from bright or low sun / lights as well as 

reflectance from piles of snow (see citations). If video processing is done on a sequence of images, then single frame 

‘images’ can be factor especially over several ones, also due to compression of both images and video. Some form 

of downscaling is needed, either in frame rates or redundant coding. Below in Table 3  are a couple of image quality 

assessment tools. Future work will experiment with additional image assessment. 

 

Image 

Attribute 

Source 

Lang. 

Comment GitHub  

Stars 

Forks Links / Notes. 

Blurriness Python Provides a quick & 
accurate method for 
scoring blurriness. See 
Figure 8. 

277 1 https://github.com/WillBrennan/BlurDetection
2 

 

Multiple  Python PyTorch Image Quality 
(PIQ) is a collection of 
measures and metrics for 
image quality 
assessment. The library 
contains a set of 
measures and metrics 
that is continually getting 
extended 

1100 107 https://github.com/photosynthesis-team/piq 

Blurriness              Python Attempts to judge if an 
image is blurred or not 
using a score. 

- - Own development. 

Exposure Python No reference image 
sharpness assessment 
based on local phase 
coherence. 

40 7 https://github.com/elejke/awesome-defocus-
detection 

https://www.asprs.org/wp-content/uploads/Lidar_Guidelines_3-19-2018.pdf
https://github.com/thu-ml/3D_Corruptions_AD
https://github.com/WillBrennan/BlurDetection2
https://github.com/WillBrennan/BlurDetection2
https://github.com/photosynthesis-team/piq
https://github.com/photosynthesis-team/piq
https://github.com/photosynthesis-team/piq
https://github.com/elejke/awesome-defocus-detection
https://github.com/elejke/awesome-defocus-detection
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Sharpness1 Python Sharpness methods. 31 7 https://github.com/topics/image-sharpness 

Sharpness2 Python Sharpness detection - - Library calculates the 
variance of the Laplacian for 
each greyscale image. 

Brightness Python Mean of the pixel 
values for the 
greyscale images Over 
and underexposure 

- - Own development. 

Noise Python Library to calculate 
Shannon entropy of 
each image  skimage. 

Many 
and 
varied. 

 https://github.com/topics/skimage 

LiDAR 

Attribute 

Source 

Lang. 

Comment GitHub  

Stars 

Forks Links / Notes. 

Point-Cloud 
Noise 

Python A complete toolbox from 
Open mmDetection3D. 

27.9K 9.2K https://github.com/open-mmlab/mmdetection  
Corruption / noise in point clouds. See Figure 18. 

Point-Cloud 
Noise 

Python OpenPCDet is a clear, 
simple, self-contained 
open-source project for 
LiDAR-based 3D object 
detection. 

4.3K 1.2K https://github.com/open-mmlab/OpenPCDet 

Point-Cloud 
Noise 

Python MultiCorrupt: Weather 
effects in the point 
clouds [29]. 

  https://github.com/ika-rwth-
aachen/MultiCorrupt 

Table 3 - Image & LiDAR quality assessment with open-source repos 

 

Still versus motion quality assessment, the quality assessment for video has some options, ffmpeg, the open-

source audio and video codec, probably is the best-known for video, notably in cross platform players such as VLC 

for decoding (usually) and HandBrake (coding). It also includes three quality metrics: 

 

• Peak Signal-to-Noise Ratio (PSNR), which measures the difference between the original and compressed 

videos. A higher PSNR generally indicates that the reconstruction is of higher quality.   

• Video Multi-Method Assessment Fusion (VMAF) developed by Netflix, VMAF is a perceptual quality metric 

that considers both human vision system models and machine learning models to provide a more accurate 

quality score.  

• Video Structural Similarity Index (SSIM) is another metric that evaluates the perceptual difference between 

two videos. A value closer to 1 means the videos are more similar. 

We can use ffmpeg as the external tool videos, as it has ffprobe and ffplay as sister tools to play, examine and 

look at the coding, these tools help when dealing with many files. In the VMAF case, a separate codebase and tool 

is available. Note, however a reference or “best quality” is needed, to make the comparison. Note others exist [14], 

as well as separate ones for LiDAR [20, 21]. A no reference video quality paper is in [26]. If videos are recoded, or 

resized or even format changed (mkv, mp4, mov, wmv) one should use the quality comparison tools above. An 

interesting, and yet unexplored option is to rate images from good weather conditions. In other words, ideal conditions 

against poor/harsh/adverse conditions, again in other words again, the reference image is the good weather, and the 

degraded image is in poor weather conditions. 

  

https://github.com/topics/image-sharpness
https://github.com/topics/skimage
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/OpenPCDet
https://github.com/ika-rwth-aachen/MultiCorrupt
https://github.com/ika-rwth-aachen/MultiCorrupt
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Data Readiness Levels: The concept 

Data Readiness Level (DRL): In analogy with the concept of technology readiness levels [1], data readiness level 

assessment is a method for characterising data readiness for deployment. The overall data quality builds on 

Lawrence’s data readiness levels (DRL) concept [2] and is a significant part of project planning and development. It 

is not by chance that up to 80% of the total project time is spent on pre-processing data, basically following the Pareto 

principle [1]. The principle states “it takes 20% of the time to do 80% of the work, and 80% of the time to do the 

remaining 20%”, even simpler stated, “one can do the large parts, but the fiddling consumes a lot of time (and effort)”. 

The main challenges of constructing meaningful data readiness levels are: i) assigning a single DRL (1–9) to large, 

complex datasets, often with imperfections [2], such as missing values, inaccuracies, and incomplete readings; ii) 

different readiness suggests different implications to different users, since data is often context sensitive; iii) some 

data consumers may have methods to handle imperfections, for example, in the missing data case, methods may, 

or may not, have been coded to handle missing values. Depending on the upstream capabilities, the DRL may be 

inaccurate [3,4]; and iv) production of quality sensor datasets (real car readings) are currently available for use.  

One way to see data readiness is the values 1-9 indicate a quantitative measure of the time / effort / cost to repair / 

replace produce new values. Lower values are in principle easier to fix than those higher up the scale. Note, if errors 

in the lower end will propagate through the data pipeline causing issues, and probably harder to detect. This is 

because transformations (scaling, fusing, ML algorithms etc.) are applied and debugging the ML pipeline is more 

time consuming. Indeed, WP5 deals with making the ML pipeline as transparent as possible.  

Lawrence’s initial concept defines data readiness in three different bands—A (utility), B (validity), and C 

(accessibility)—depending on the knowledge and understanding of the available data and their usefulness for a given 

objective. We go back to the 9 levels present in TRLs and use them as below in Table 4 .  

 

Figure 7- Lawrence’s data quality bands 
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Figure 8 - Illustration of the DRLs for ROADVIEW 

 

Level Type  Description Example / Notes 

9 (highest) ML  Successful object recognition in 
harsh weather in a live driving 

situation.  

A vehicle driving 
around rural and 
urban 
environments. 

8 ML  Successful computer object 
recognition in harsh weather 
conditions.  

An actual vehicle is 
not involved, rather 
in a lab, (offline) 
test. Probably  

 

7 ML  Insufficient / incorrect data for 

training. 
 

6 Video Video 
frames 

Quality issues Video quality 
experts' group. 
VISIBLE and 
thermal different. 

5 Video Video 
frame 

Missing values Gaps in frames 
causes problems. 

4 Images Single 

image 
Brightness, contrast, blurriness  
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3 Images Single 

image 
Missing streamed values Gaps in the data 

sequence (Missing 
frames in 
VisualizePixelwiseF

usionImages., FGI) 

2 Data Single 

image 

Incorrect data Confusing / wrong 
information. Fields 
used in inconsistent 
manners Data 
repeated in non-
normalised DB 
schemas. 

1 (lowest) Data  Formatting Mismatches 
(decimal 
separators) points, 
km / mph 

Table 4 - Specific Data Readiness Levels for ROADVIEW. The light-yellow shaded cells indicate Domain specific data 

issues whilst the light blue cells data agnostic processing. 

 

Data source I: The Finnish Geological Institute (FGI) training data  

We take a little deeper dive into a dataset available in the ROADVIEW project. It was kindly made available by the 

Finish Geological Institute; we list some of the attributes of the data made available. The scope of the description is 

quite high-level formats, visualisation to the lower-level formatting and how to unpack and use the four sensor types. 

Table 5  shows the sensor, the recorded attribute and format and notes on the data. 

FGI sensors, formats, and files 

Sensor Format Notes 

Camera PNG Anonymised (Blurred faces and number plates).  

Unrestricted license compressed format. 

Thermal Camera TIFF Raw, unrestricted license format (16 bit) 

LiDAR RG Binary packed range and reflection data 

Road weather RW Binary packed road conditions data (see below) 

RADAR - Not available from FGI (yet) 

Table 5 - Data formats from FGI dataset 

 

One aspect of FGI’s data is the use of binary weather formats, binary structured files. FGI use Python’s: 

  

Struct.unpack_from(format, data, offset) 

 



 

Deliverable No. D4.5  Title  

Version 04   Initial readiness assessment of specific datasets 

Project no. 101069576 

 

 

Page 25 of 49 
 

 

Function to pull out the file’s data. This we needed to generalise for reading other datasets, in other formats such as 

ROSBAGs. Waymo uses HDF5 (see below).  

 

Road conditions 

In the FGI dataset, the road conditions were categorised as in Table 6 . Bool represents Boolean, if available and 

measured or not. 

 

Attribute Format 

Surface Temperature Bool 

State Bool 

Water Bool 

Grip Bool 

Ice Bool 

Snow Bool 

EN15518 State Bool 

Air Temperature Bool 

RH Bool 

Dew Point Bool 

Frost Point Bool 

  

Data Warning Bool 

Data Error Bool 

Unit Status Bool 

Error Bits Bool 

Table 6 - Road Weather, conditions & data fields in the FGI Dataset 

 

A master’s thesis on the topic has recently been produced, which includes slipperiness and grip [27]. 

 

Urban and rural driving data 

The Finish Geospatial Institute (FGI) has produced a data set, shown in Table 5 . It was used to generate the video 

shown in link. The whole data set size was about 34 Gigabytes for a 10-minute drive. 8 below shows the data rates 

and message sizes computed in kB / s and in MB / minute. Content-wise the data is divided into a Rural and Urban 

drives, 1810 and 3027 in PNG, TIFF images and RW ‘format’ (see above) respectively.  

 

https://ianmarsh.org/sensor-fusion-for-autonomous-driving/
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Rural Sizes # Files Urban Sizes # Files 

Camera 
anonymised 

2.4G 1810 Camera 
anonymised 

4.7G 3027 

LiDAR 913M 1810 LiDAR 1.5G 3027 

Thermal camera 6.7G 1810 Thermal camera 39M 3027 

Road Weather 21M 1810 Road Weather 39M 3027 

Table 7 - Two autonomous driving datasets from FGI (https://www.maanmittauslaitos.fi/en/research) 

 

 

 

Figure 9  - Example of FGIs Urban 3 data sources fused, Video link (5fps). 
 

The output of a processed urban dataset is a 250 MB video around 5 minutes long at 10 frames per second. The 

rural one is 60 MB around 3 minutes also at 10 frames per second. More on rates and sizes in Table 7 above. Note 

this is without RADAR data and does not say anything about training, validating an AI model. The start frames can 

also be specified and in the rural case this is offset by 300 ‘frames’ as the capturing started early. Table 8  shows the 

sizes and times to fuse data (offline) the two datasets. Processing was done on a 2021 MacBook Pro (M1 Max CPU). 

 

 

https://www.maanmittauslaitos.fi/en/research
https://ianmarsh.org/wp-content/Videos/urban_5fps.mp4
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Environment Output video (@ 10 frames / sec) Fusion Time 

Rural 60 MB 30 mins 

Urban 250 MB 50 mins 

Table 8 - Output characteristics using the FGI dataset above. 

 

In terms of performance issues, Python will produce binary files *.pyc rather than text to make the interpreted code 

into a binary. For large programs (rather than data) this can speed up execution. For optimising the code, one can 

use timeit to find functions or sequences that consume time. Alternatives are cProfile and very recently, Scalene 

from Umass, Amherst, USA (Aug 28th, 2023). Table 9  below gives the breakdown per sensor and how the data 

streams are reduced by down sampling. 

 

Sensor 
Data per 
message 
(kB) 

Freq. 
(Hz) 

Data rate 
(kB/s) 

MB/min 
Data rate in 5Hz  
low sampled data 
(kB/s) 

MB/min 

Novatel GNSS + IMU 
positioning 0,09 205,0 19 1,10 19 1,10 

Front colour camera 1399 10,0 13984 819 6993 410 

Thermal camera centre 241 60,0 14459 847 1204 71 

Thermal camera left 240 60,0 14407 844 1200 70 

Thermal camera right 235 60,1 14126 828 1176 69 

Vaisala MD30 0,04 40,0 2 0,09 2 0,09 

Velodyne VLS128 LiDAR 617 9,1 5630 330 3087 181 

SUM   62626 3669 13680 802 

Table 9 - Sensor sizes and rates from the FGI dataset. 
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Figure 10 - Blurriness obtained by taking the variation of the Laplacian of the 3000 images in the FGi’s dataset. Image 

sizes are scaled to HD. Higher values are less blurry. 

 

As can be noted, thermal cameras have a lot higher data rate than other sensors (60Hz vs 10Hz). Now there is 3.6 

GB of raw data per minute. If only the frames which are used to generate the sensor-fused frames at 5Hz are listed, 

the data rates decrease significantly. Computed is a low sampled example in the two last columns, where only 5 

samples per second have been taken from all cameras and the LiDAR. In this low-sampled version one minute of 

raw data is 802 MB. The project will take different data sets under various weather conditions. Using a low sampled 

would take a few 100’s GBs, but if full resolution is needed, an estimate is > 1TB. 

 

In the initial readiness assessment, RISE introduced the concept of DRLs. Data plays a fundamental role in the 
ROADVIEW project, making the completeness, correctness and interoperability of data are utmost important aspects 
of the data processing pipeline. RISE investigated the multimodal sensors that are used in ROADVIEW, summarizing 
the physical nature of each sensor, but focusing on camera image quality for the initial DRL definition in D4.5.  As 

shown in Figure 8, from the lower DRL levels, DRL 1 is about the sensors and perturbations therefrom. We know 
snow, ice, dust, and dirt inhibit signals from the LIDAR and RADAR. This is very much the focus of other tasks, with 

a slight emphasis on RADAR. Calibration at DRL 2 is an important aspect, calibration, which we separate into 2 
types:  

 

Intrinsic calibration  
Intrinsic calibration is basically sensor calibration, lens alignment, which can result in distorted / rotated images and 
point clouds, the resulting matrices contain wrong values with respect to reality, often abbreviated to NAs. The 
abbreviation can stand for Not Applicable, Not Available or Not Assessed. In the case of LiDAR, the laser sweeps 
should be within a range and intrinsic calibration is done to a known point cloud, physically adjusting the LiDARs. 
Often RGB cameras are seen as the trusted modality. Intrinsic calibration is only done once, rechecks and calibration 
are redone if something breaks during trials.  
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Extrinsic calibration  
It is important to position the sensors with respect to each other. In vehicles with sensors, often the RGB camera is 
seen as the 'base' sensor or modality. One reason is that one can infer 'where' the camera is on the vehicle using 
internal and external imaging solutions. Speciality software takes pictures outside of the vehicle and inside the vehicle 
to calculate the position of the RGB cameras. The Radio Cross Section (RCS) of a target is the equivalent area as 
seen by a RADAR. It is the fictitious area intercepting that amount of power which, when scattered equally in all 
directions, produces an echo at the RADAR equal to that from the target.  
 

At DRL 3 we deal with missing data, as when streamed from sensors in real time (even when buffered) gaps in the 
sequence can occur. Data rates exceed capacity, sensors do not always pick up information, noise in the data 
overrides the signal and so on. The ratio of signal to noise is a key factor in any sensing situation. Theoretical 
results and extensive practice and calibration can to some degree predict the performance of a sensor, or modality 
in autonomous driving. However, in practice, and real driving situations it is more difficult to ascertain the signal and 
noise ratios. In the dataset from FGI a few values are missing, see Figure 11. Two representations of ‘sequence 
gaps’ in the FGI dataset. The leftmost by differencing, the rightmost by absolute timestamps below.  

  
Figure 11 - Two representations of ‘sequence gaps’ in the FGI dataset. The leftmost by differencing, the rightmost by 

absolute timestamps.  

 
 
 

At DRL 4 we have the positioning and inertia measurement units. For now, we have them at the same level. This 
could be for discussion later, but knowing where we are (GNSS) and how the vehicle accelerates, brakes, or vibrates 
is important in post-processing. Repeated runs along the same route in different conditions produces repeatability 
but also changing, a limited, but known, number of parameters. Indeed, in ROADVIEW runs are done when the 
weather has changed. An extension is to create the weather artificially, as done in the THI and Cerema test site in 
Germany and France.  

 

At DRL 5 we have images and the LIDAR / RADAR. They are different modalities, but in essence are similar in terms 
of sensing. We look at several different open-source tools to assess them.  

 

At DRL 6 we have the collated ‘data’. That is video and LiDAR scans, processed (frame rates, resolutions) single 
images combined into videos and LiDAR point clouds, spatially and temporally collated. We look at the video quality 
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as well in this Task, using vmaf (Table 61) which the rest of the project does not do. LiDAR point clouds are heavily 

discussed in this report. With respect to data quality, we have access to the FGI & THI datasets and are evaluating 
those, and we can introduce weather effects into public datasets and evaluate them, this is done with tools such as 
MultiCorrupt [29] and Robo3D.  
 

At DRL 7 we have the processing of the point clouds, removing noise from the point clouds to make object recognition 
effective, this is being done in other parts of the project.  
 

We have left one DRL 8 free as some processing in the ML pipeline, that can affect the final quality. Research is 
being done to rasterise point clouds, make the point clouds more sense or using multiple sources to enhance quality. 

Therefore, we leave DRL 8 for each advancement.  
 

DRL 9 is strictly about the object detection, in free space or in scenes that is coupled to the algorithms themselves. 
We have implicitly assumed that the algorithms are perfect and only data is a detractor, which is strictly not true. The 
algorithm and often the algorithm and the data it is trained, validated, and tested upon can have significant impacts 
on the results in AD. This is why different techniques are evaluated, often on several datasets, and with quite different 
outcomes. The mmDetection suite tests their algorithms on different datasets showing a fair difference. Therefore, 

the algorithms themselves need to be considered, and this is being done in WP5.   
 

 
Figure 12 - Otaniemi. A rural route between Hilantie-Pohjoiseen in southern Finland. 
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Figure 13 - Time series of blurriness. Left: recording in an urban environment. Right: recording in rural area / transit.  

 

Linear combinations of sensor inputs 

The main fulcrum of this work is how the DRL is calculated. For the moment, it is a linear combination of the inputs 

from the sensors. Should one be missing, RADAR for example, its contribution is distributed amongst the others. 

Similarly, so with multiple numbers of the same, for example 4 cameras. For forward and backward sensors, we will 

(for now) exclusively use the forward ones. Side ones will be given 25% max. However, this is a heuristic value and 

will be explored further.  

It is important to reiterate that the Data Readiness or Quality is really for off-line use, to ensure the data is of sufficient 

quality. It is assumed that the algorithms are ‘perfect’ which is unreasonable, but there are many algorithms and 

measures to determine how good the algorithm is. Estimating the data quality known the performance (in %) of 

algorithms is possible, but over complicates the issue and might place emphasis on the wrong place.  

An alternative would be start from the other end and say when the object detection is correct in the training data, 

then the data is perfect and for each ‘imperfection’ in the image correlate this with the classification success. Or a 

misclassification is back traced to an image that is not clear enough. There is also the issue of the training and 

validation sets, how they are selected. In the standard image sets this is done, however in our internal datasets this 

is being assessed. 

 

DRL = VISIBLE imaging + Thermal imaging + LiDAR imaging + RADAR 

imaging  

 

Implementing DRLs for ROADVIEW 

In the first incarnation we used the FGI implementation, which we first refactored, from plotData_example.py 

source code with four functions: 

 

def ReadRWImage(filename, out_datas=None, ret_image=False): 

def ReadRangeImage(filename, ret_image=False): 

def ExpandPixels(image, amount): 
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def VisualizePixelwiseFusionImages(main_folder, start_index=0, show_fused=False): 

 

Consisting of 479 lines. RISE increased the modularity from the 4 functions to 13 functions, and no. of code lines 

601. As well as to understand the code better, reduce repeated code, make hooks for reading other data sources, 

as well as the DRL functions. The code is available from RISE Git Lab. RISE is looking at ice cloud shared notebooks, 

for now we will share code at the link above internally and use ROADVIEWs GitHub repository. 

 

 
Figure 14 - DRLs applied to the images from FGI urban journey (credit: The Finish Geospatial Institute, fgi.fi). Top: Simple 

RGB image. Mid: thermal camera image projected into the RGB camera image. Bottom: LiDAR point cloud projected into 

RGB camera image.  

 
Finally, for the FGI dataset, Figure 14 shows one representative frame of the dataset, showing the RGB camera as 
well as thermal counterpart and LiDAR point cloud data, all projected into the RGB camera image. The RGB camera 

https://gitlab.ice.ri.se/ian.marsh/roadview-heikki.
https://github.com/roadview-project
http://www.fgi.fi/
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image was rated with DRL 7 while the thermal camera frame only got up to 4 – 5. This is mainly due to the edges of 
the thermal camera image, simply caused by the working principle of the sensor itself. These edges do cause issues 
in the image quality evaluation though, hence less DRL rating. Lastly the LiDAR point cloud is yet to be evaluated 
since the methodology for point cloud rating is not yet finalized. The projected point cloud into the image plane in the 
bottom image of Figure 12 leads to the question of rating extrinsic calibration, which needs to be further discussed 
also.  Ongoing work will look at the dataset from THI and VTT which has been received by RISE. Together with HH, 
the LiDAR point cloud data will be projected into spherical coordinate system to generate image representations for 
assessment. RISE also plans to apply the DRL concept to at least 1 public dataset.  

 

Figure 8 showed the ROADVIEW reference architecture together with the DRL levels. The data readiness level is 
based on the perception module. The DRLs follow the data flow as indicated in the DRL architecture to the right. 
Data processing steps that occur in practice that influence the data quality occur in the DRL data processing pipeline 
are shown in the right figure. An example is dealing with missing data, that is a fact in real time sensing and 
importantly can detract from the overall quality, furthermore, affects the steps upstream. Therefore, there is no direct 
1-1 mapping from the reference architecture to the Data Readiness Levels but is close (and should be).  
 

With the modalities with the datasets we have, FGI is all minus RADAR and THI is all modalities.   

 

The next steps for Task 4.3:  

• Continue working with datasets wrt. THI, VTT  

• Incorporate RADAR data from RISE  

• Look at missing data impacts from VTT  

• Investigate how calibration affects DRLs (upwards)  

• Look at rasterising point clouds to images  
 

Main outcomes  
Initial data readiness levels with respect to the FGI dataset. Developed a software framework for DRLs and open 
datasets. Evaluated 5 image and 2 LiDAR point cloud datasets.  
 

 

Data annotations 

Whilst most of this report is about data quality, annotating data is a significant issue. In machine learning, data 

annotation is the process of labelling data. This labelled data is then used to train supervised learning models. Data 

annotation is a crucial step in many machine learning projects, especially in projects such as ROADVIEW: vision, 

scene detection. Obviously, the quality and accuracy of the annotated data affects the performance of the resulting 

machine learning models. Within ROADVIEW we use: 

• Image Annotation: This involves marking various objects within images. Types of image annotations include: 

• Bounding boxes: Drawing rectangles around objects of interest. 

• Semantic segmentation: Labelling each pixel of an image with a class label. 

• Polygonal segmentation: Drawing polygons around objects, especially those with irregular shapes. 

• Key point annotation: Marking specific points of interest on objects, often used for pose estimation. 

• Named Entity Recognition (NER): Labelling words or sequences of words as specific entities like names, 

locations, or dates. 

• Video Annotation: Labelling objects or actions within video sequences. This can involve bounding boxes over 

time or tagging entire video clips with action labels. 

• Audio Annotation: Marking sections of audio data to label different sounds, words, or other audible events. 

The process of data annotation is time-consuming, requires domain expertise and ROADVIEW has a Task for this 

purpose. An interesting angle is active learning, where a machine learning paradigm where the model itself decides 
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which data points should be annotated furthermore, based on where it predicts the annotation would be most 

valuable. This can help reduce the amount of manual annotation. 
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Data source II: ROADVIEW-Carissma 

Below is the test track and examples of the CARISSMA outdoor test facilities. There is an acceleration zone of 210m 

and a dynamic area with a 60m x 70m area. The maximum speed is 100km/h. Different parts of the track are watered 

with different intensities. The. Images show the watering and measurement instrumentation. Initial data sets with 

images and point clouds have been produced. The full work will be available in Feb. 2024. Figure 15 shows the test 

track, ‘artificial’ weather conditions (rain) and a LiDAR point cloud in these conditions. 

  

 

 

Figure 15 - Refence Dataset of measured weather characteristics, THI D3.2, WP3 
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Figure 16 - Reference Dataset of measured weather characteristics, THI D3.2, WP3 

 

The datasets were created to observe the 3 weather conditions rain, clear, and fog different conditions on different 

sensors. The utilised sensors in this case were VISIBLE Camera (LUCID), FLIR (Thermal) Camera, RADAR (ZF 

ProWave), and LiDAR (Innoviz One and Ouster OS1). This dataset has a total of 68.4 minutes of recording. The 

recording took place in the Carissma outdoor proving ground in Ingolstadt Germany, and in the CE proving ground 

in Clermont Ferrand France. Each with different intensities. The amount of rain was also measured and calibrated 

using three different methods, litres per square meter, drop shape and amount, and direct weather measurements. 

 

Data Source III: Open-source data sources 

Recently companies & research institutions have made their autonomous driving datasets open to the public. A 

Medium post found and summarised 15, as of July 2021, by Alex Nguyen. Audi A2D2 dataset 41K labelled images 

with 38 features, 2.3 TB split by annotation type, semantic segmentation, 3D bounding box. ApolloScape, 100K 

street view frames, 80k LiDAR point cloud and 1000km trajectories for urban traffic. 3D tracking annotations for 113 

scenes and over 324,000 unique vehicle trajectories for motion forecasting. Berkeley DeepDrive 100k annotated 

videos and 10 tasks, 1000 hours driving, 100M frames plus geographic, environmental, and weather diversity. 

Cityscapes urban street scenes in 50 German cities. Semantic, instance-wise, and dense pixel annotations for 30 

classes grouped into 8 categories, 5K images with fine annotations & 20K with coarse annotations. Comma2k19, 33 

hours of commute time recorded on highway 280 in California. 1-minute scenes captured on 20km of highway 

between San Jose-San Francisco. Collected using comma EONs, i.e., a road-facing camera, phone GPS, 

thermometers, and a 9-axis IMU. Google Landmarks (2018) divided into two sets of images to evaluate recognition 

and retrieval of human-made and natural landmarks. 2M images of 30K unique world, 2019 saw Landmarks-v2, 5M 

images & 200K landmarks. KITTI Vision data, 2012. LeddarTech Dataset, 2021, cameras, LiDARs, radar, IMU + 

full waveform a 3D solid-state flash LiDAR sensor. Contains 29k frames in 97 sequences & 1.3M 3D boxes annotated. 

Level 5 Open Data (Lyft) 55K human-labelled 3D annotated frames, surface map, and an underlying HD spatial 

semantic map captured by 7 cameras and 3 LiDAR sensors. nuScenes dataset from Boston + Singapore using a 

full sensor suite, 32-beam LiDAR, 6 360° cameras and radars, the dataset with 1.44M camera images capturing a 

diverse range of traffic situations, driving manoeuvres, and unexpected behaviours. Examples are from clear weather 

https://medium.com/analytics-vidhya/15-best-open-source-autonomous-driving-datasets-34324676c8d7
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night-time, rain & construction zones. Oxford Radar RobotCar Dataset contains 100+ recordings of a route through 

Oxford, UK, captured over 1 year. Captures different conditions, including weather, traffic & pedestrians + 

construction / roadworks. PandaSet the 1st open-source AV dataset for academic & commercial use. Contains 48K 

camera images, 16K LiDAR sweeps, 28 annotation classes, and 37 semantic segmentation labels. Udacity Self 

Driving Car Dataset has open-sourced access to a variety of projects for autonomous driving, including neural 

networks trained to predict steering angles of the car, camera mounts, and dozens of hours of real driving data. 

Waymo Open Dataset is an open-source multimodal sensor dataset, covers a wide variety of driving scenarios and 

environments. It contains 1K types of different segments where each segment captures 20 seconds of continuous 

driving, corresponding to 200K frames at 10 Hz per sensor. A summary of datasets considered in a nuScenes paper 

is below. 

 

 

Table 10 - Dataset summaries from the NuScences paper, processing of standard datasets can be found in 

MMdetection3D. The paper assesses methods applied to popular available datasets [22]. 

 

 

Open dataset candidates for testing within ROADVIEW DRL (MoSoCow) must / should / could fulfil. 

1. Must 

o Open licensing terms 

o Include LiDAR, Camera and IMU measurements 

2. Should 

o Include RADAR, LiDARs, VISIBLE Camera(s), Thermal Cameras, IMU  

o Have a toolkit to read, incorporate or indicate how to use the data 

o Have some data in adverse weather 

3. Could 

o Gather data from trucks rather than cars 

o Appear in places such as paperswithcode.com  

 

https://arxiv.org/pdf/1903.11027.pdf
http://paperswithcode.com/
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3 external candidates have been selected for testing within ROADVIEW as extern sources. The sources are available 

for non-commercial, and research purposed. Table 11  shows the datasets we selected for further investigation. 

Basically, a subset from the longer nuScenes paper state of the art survey.  

 

Priority Dataset License SDKs Dataset Download  

First nuScenes NuScenes Dataset 
Agreement, primarily 
for non-commercial 
academic use. 

https://colab.research.google
.com/github/nutonomy/nusce
nes-devkit/ 

https://www.nuscenes.org/n

uscenes#data-collection 

Second Kitty Creative Commons 
Attribution-Non-
Commercial-Share 
Alike 3.0 License 

https://medium.com/multisens
ory-data-training/import-and-
export-your-3d-point-cloud-
data-in-kitti-format-with-
xtreme1-sdk-toolkit-
4e74c3ce3b1c 

https://www.cvlibs.net/datas
ets/kitti/raw_data.php 

Third, used in 
mmDetection
3D + 
corruptions 

Waymo 
Open 
Dataset 

Waymo Open Dataset 
License Agreement.  

https://github.com/waymo-
research/waymo-open-

dataset 

https://waymo.com/open/do
wnload/ 

(Redirects to Google) 

(Optional) Oxford 
Radar 
RobotCar 
Dataset 

Creative Commons 
Attribution-Non-
Commercial-Share 
Alike 4.0 International 
License (CC BY-NC-SA 
4.0). 

https://github.com/ori-
mrg/robotcar-dataset-sdk 

https://oxford-robotics-
institute.github.io/radar-
robotcar-dataset/downloads 

Table 11 - Open-source datasets for use in autonomous vehicles and our processing priority 

 

 

A NuScenes dataset example (Colab link) 

An example from the nuScenes dataset + SDK is show below. A Notebook and execution environment available at 

the link in the heading. A mini dataset is available for experimentation, link. The miniset example consists of 23 

categories, 8 attributes, 4 visibilities, 12 sensors, 31206 ego poses, (movement of the measurement vehicle itself), 8 

logs, 10 scenes, 404 samples, 31206 sample data, 18538 sample annotations and 4 maps. Some simple examples, 

scene-0061, ‘Parked truck’, construction, intersection, turn left, following a van’, see Figure 17 below. 

 

https://colab.research.google.com/github/nutonomy/nuscenes-devkit/
https://colab.research.google.com/github/nutonomy/nuscenes-devkit/
https://colab.research.google.com/github/nutonomy/nuscenes-devkit/
https://www.nuscenes.org/nuscenes#data-collection
https://www.nuscenes.org/nuscenes#data-collection
https://medium.com/multisensory-data-training/import-and-export-your-3d-point-cloud-data-in-kitti-format-with-xtreme1-sdk-toolkit-4e74c3ce3b1c
https://medium.com/multisensory-data-training/import-and-export-your-3d-point-cloud-data-in-kitti-format-with-xtreme1-sdk-toolkit-4e74c3ce3b1c
https://medium.com/multisensory-data-training/import-and-export-your-3d-point-cloud-data-in-kitti-format-with-xtreme1-sdk-toolkit-4e74c3ce3b1c
https://medium.com/multisensory-data-training/import-and-export-your-3d-point-cloud-data-in-kitti-format-with-xtreme1-sdk-toolkit-4e74c3ce3b1c
https://medium.com/multisensory-data-training/import-and-export-your-3d-point-cloud-data-in-kitti-format-with-xtreme1-sdk-toolkit-4e74c3ce3b1c
https://medium.com/multisensory-data-training/import-and-export-your-3d-point-cloud-data-in-kitti-format-with-xtreme1-sdk-toolkit-4e74c3ce3b1c
https://www.cvlibs.net/datasets/kitti/raw_data.php
https://www.cvlibs.net/datasets/kitti/raw_data.php
https://github.com/waymo-research/waymo-open-dataset
https://github.com/waymo-research/waymo-open-dataset
https://github.com/waymo-research/waymo-open-dataset
https://waymo.com/open/download/
https://waymo.com/open/download/
https://github.com/ori-mrg/robotcar-dataset-sdk
https://github.com/ori-mrg/robotcar-dataset-sdk
http://oxford/
http://oxford/
http://oxford/
https://colab.research.google.com/github/nutonomy/nuscenes-devkit/blob/master/python-sdk/tutorials/nuscenes_tutorial.ipynb#scrollTo=NH_ZqVJh6krT
https://www.nuscenes.org/data/v1.0-mini.tgz
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Figure 17 - nuScenes example I (https://github.com/nutonomy/nuscenes-devkit) 

 

 

my_annotation_token = my_sample['anns'][18] 

my_annotation_metadata =  nusc.get('sample_annotation', my_annotation_token) 

my_annotation_metadata 

 

Produces: 

{'token': '83d881a6b3d94ef3a3bc3b585cc514f8', 

 'sample token': 'ca9a282c9e77460f8360f564131a8af5', 

 'instance token': 'e91afa15647c4c4994f19aeb302c7179', 

 'visibility token': '4', 

 'attribute tokens': ['58aa28b1c2a54dc88e169808c07331e3'], 

 'translation': [409.989, 1164.099, 1.623], 

 'size': [2.877, 10.201, 3.595], 

 'rotation': [-0.5828819500503033, 0.0, 0.0, 0.812556848660791], 

 'prev': '', 

 'next': 'f3721bdfd7ee4fd2a4f94874286df471', 

 'num_LiDAR_pts': 495, 

 'num_radar_pts': 13, 

 'category name': 'vehicle.truck'} 

 

https://github.com/nutonomy/nuscenes-devkit
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Or as a rendered image, Figure 18 below shows the same camera in front, a bounding box and the category name 

(in the key-value above).  

 

 

 

Figure 18 - nuScenes example II (https://github.com/nutonomy/nuscenes-devkit) 

 

 

Below in Figure 19 are the functions of all corruptions in 3D object detection. The 3D corruptions project is built upon 

MMDetection3D and OpenPCDet with code modifications. The authors identify 32 LiDAR corruptions and 14 camera 

corruptions. They test the impact of the corruptions on the Kitty dataset [25]. 

 

 

Figure 19 - Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving  

 

https://github.com/nutonomy/nuscenes-devkit
https://github.com/thu-ml/3D_Corruptions_AD
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MMdetection3d 

An interesting library is mmdetection3d. Not as cited as the others, but with over 1500 forks it is a feature rich dataset 

for experimentation, in paperswithcode, there are 63 such papers. MMDetection3D is an open-source object 

detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the 

OpenMMLab project. It supports multi-modality/single-modality detectors out of box using detectors including 

MVXNet, VoteNet, PointPillars, etc. It directly supports popular indoor and outdoor 3D detection datasets, including 

ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For the nuScenes dataset, they also support the 

nuImages dataset. All the 300+ models and methods of 40+ papers as well as modules supported in MMDetection3D 

can be trained or used. The many authors claim it trains faster than other codebases. Like MMDetection3D and 

MMCV, MMDetection3D can also be used as a library to support different projects. Note it can detect images using 

pixel-based classic bounding boxes, semantic segmentation as well as panoptic image recognition. 

 

Computer-generated images (simulating weather) 

An alternative to using lots of data, plus expense of buying and instrumenting sensors as well as measuring, storing, 

processing, and driving around areas, one can generate the scenes as a sensor would see. As examples of visible 

images that can be generated, see Figure 20 below for examples.  

Snow: Light, heavy 

 

 

Snowfall: Light, Medium, heavy  

 

 

Time of day: Winter daytime, morning, night 

 

Figure 20 - Machine-generated scenes from WP2  

https://github.com/open-mmlab/mmdetection3d
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Three ways forward using these images, is to  

1. Calibration of data quality 

a. Generate a perfect image (DRL score 9) 

b. Generate a very noisy, blurred image (DRL score 1)  

2. Backtrace from object misclassification to pixels 

3. Generate scenes that we do not have data for. 

 

This is work in progress and future deliverables will contain some of the results of using artificial or simulated weather 

conditions. 
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Part III: Computing & resources 

This part of D4.5 is concerned with the computing aspects of the datasets and their quality. This includes the storage 

format, de-facto standards and alternatives, a little about the costs. 

 

The S3 system 

S3, or Amazon Simple Storage Service, is a scalable cloud storage service provided by Amazon Web Services 

(AWS). It does not have a specific "S3 data format." Rather, it allows you to store and retrieve various types of files, 

objects, or data in a highly available and durable manner. The files and objects stored in Amazon S3 can be in any 

format, such as text, images, videos, or binary data. We use S3 to store datasets for collaboration.  

Amazon S3 organises data in a hierarchical structure with the following components: 

• Buckets: These are top-level containers that store your data objects. Each bucket has a unique name within 

the S3 service, and you can create as many buckets as needed. 

• Objects: Objects are the individual data files or items stored in S3 buckets. Each object consists of a key (a 

unique identifier within a bucket), data (the actual content of the object), and metadata (additional information 

about the object). 

Amazon S3 supports various features such as versioning, lifecycle policies, access control, and data transfer 

acceleration. You can interact with Amazon S3 through the AWS Management Console, AWS CLI, SDKs, or RESTful 

APIs. They are suitable for ROADVIEW due to speed, relatively simplicity and the ability to add Access Control Lists 

(ACLs) to Buckets.  

 

ROS bags 

ROS bags are a file format used in the Robot Operating System (ROS), a flexible and open-source framework for 

developing robotics software. ROS bags provide a way to record, store, and play back data generated by ROS nodes 

during the operation of a robot or a simulation. This data can include sensor readings, messages exchanged between 

nodes, and other types of information generated within the ROS environment. 

ROS bags use the .bag file extension and are designed to be an efficient and flexible format for storing large amounts 

of time-stamped data. They are especially useful for: 

• Logging data: ROS bags can be used to record sensor data and other information during robot operation, 

which can be later analysed, visualised, or processed for various purposes such as debugging, testing, or 

performance evaluation. 

• Simulation and testing: Recorded data in ROS bags can be used to replay specific scenarios or situations, 

enabling developers to test algorithms or tune parameters in a controlled and repeatable environment. 

• Sharing data: ROS bags provide a standardised format for exchanging data between different researchers, 

institutions, or projects. This makes it easier to collaborate, reproduce experiments, and compare the 

performance of different approaches. 

To work with ROS bags, you can use the rosbag command-line tool that comes with ROS. Some of the common 

functions in CLI format are below in Consolas format. 

• rosbag record: Records data from specified topics into a new .bag file. 

• rosbag play: Plays back the data stored in a .bag file, effectively reproducing the recorded messages and 

their associated timestamps. 

• rosbag info: Displays metadata and summary information about a .bag file. 

• rosbag filter: Extracts specific messages from a .bag file based on user-defined criteria. 



 

Deliverable No. D4.5  Title  

Version 04   Initial readiness assessment of specific datasets 

Project no. 101069576 

 

 

Page 44 of 49 
 

 

 

In addition to the command-line tool, there are various tools and libraries available for visualising and processing 

data from ROS bags, such as RViz (a 3D visualisation tool for ROS) and the Python API provided by the rosbag 

package. The Warwick ROADVIEW dataset mentioned above is in ROS format. 

 

Alternative storage formats 

HDF5, short for Hierarchical Data Format version 5, is a versatile tool for storing and managing large numerical 

datasets. It organises data hierarchically, much like a file system, and supports a variety of data types. HDF5 is 

designed to efficiently handle very large datasets, allowing users to manipulate and process chunks of data without 

needing to load the entire dataset into memory. It also supports comprehensive metadata, making the data self-

describing. The HDF5 file format is portable and performs well across different operating systems. Its applicability 

ranges across several scientific fields such as physics, astronomy, chemistry, and bioinformatics due to its ability to 

handle complex data structures. 

Comparing the two, ROS bag is more specific to the ROS ecosystem and is optimised for storing message-passing 

data between software components, while HDF5 is a more general-purpose tool used in a wider range of applications 

for handling large and complex datasets. Conversion between HDF5 and Rosbag can be done with to and back. 

Alternative formats for high-speed data processing are Parquet & used by Waymo. It is a columnar binary storage 

file format optimised for use with big data processing frameworks like Apache Hadoop & Spark, plus many others.  

 

The RISE ICE Cloud 

One of the key features of the ICE data centre is its use of innovative cooling solutions. The facility takes advantage 

of the cold climate in Luleå, Sweden to cool the servers with outside air, significantly reducing the energy required 

for cooling. This makes the data centre more environmentally friendly and cost-effective, as it minimises energy 

consumption and operational costs. 

The ICE data centre at RISE in Luleå serves as a testbed and research platform for various projects related to 

sustainable computing, including: 

• Energy-efficient data storage and processing 

• Renewable energy integration and smart grid solutions 

• Edge computing and distributed data centres 

• Cloud computing and resource optimisation 

• Data centre security and resilience 

By providing a state-of-the-art facility for the research and development of green data storage technologies, RISE in 

Luleå contributes to the global efforts towards more sustainable and energy-efficient IT infrastructure.  

RISE ICE has upgraded our Ceph storage cluster with NVMe and have moved Ceph RBD based persistent storage 

volumes from HDD to NVMe which makes it > 50x faster. CephFS (rook-ceph-fs) volumes is still on HDD because 

there is much more data there. Please do some clean-up of old data and we will move that as well. RISE offers 

several storage solutions, one is S3-Ceph buckets, which was discussed above. 

 

 

 

https://github.com/strawlab/bag2hdf5/blob/master/bag2hdf5
https://gist.github.com/s7ev3n/00fc8a2b2941d830d09a2641b050b6aa
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How fast is the RISE data centre? 

In terms of data upload an initial speed test upload to the ice data centre showed that 650 megs (about a data CDs 

worth) was uploaded in about 9 secs. A DVD (4.3 GB worth of data) took about 140 seconds. The raw dataset from 

FGI is about 42 Gig, after processing, 60 Gig, and a merged 30 second video 2 Gig. No RADAR data is included in 

the FGI dataset. The S3 data format, developed by Amazon, is used in the centre, albeit an open-source 

implementation thereof called Ceph. After some testing, Stockholm to ice.ri.se (S3 buckets) 650 MB in 9 secs. Added 

NVMRe memory, this sped up access.  

 

 

Costs, storage, and formats 

The idea of the calculation in this table is to estimate the number of Terabytes available for the costs allocated.  

 

UNIT Calculation Result Notes 

TB 0.281 SEK / hour  S3 costs. @ 2023 cost 

1 year 1860 hours  Multiplying just 

Project time left 3.5 years * 1860 6510 hours 6 months elapsed (4-year project) 

Data costs in SEK 6510 hours * 0.281 1829 SEK Cost per TB over project 

Convert to Euro 1829 166 Euro Cost  

Project allocation 15k Euro 90 TB (max) Dividing 15000 / 166 

Table 12 - Storage units, costs, and formats: SEK to Euro conversion as of April 2023, (~11.7 crowns to 1 Euro). More 

at ice.ri.se (under-menu “pricing”). A total of 15k Euro is available to ROADVIEW, September 2022 to August 2026. 

Note, no computation is included in this cost, it is ‘solely’ storage. 

 

 

http://ice.ri.se/
http://ice.ri.se/
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Figure 21 - Example costs for resources used in ROADVIEW (1 SEK = 0.09 Euro or 7 SEK = 0.63 EURO) 

 

Resource  QTY  Price Total 

Kubernetes CPU 0.00 CPU / h 0.11 0.00  

Kubernetes Memory 0.00 GiB / h 0.02 0.00  

S3   25.10 TiB / h 0.28 7.05 
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Part IV: Concluding remarks 

Discussion 

We didn’t have RADAR in the FGI dataset, but in Warwick / Carissa it exists is. It is not clear how to assess RADAR 

data in terms of quality now, except the positive or negative presence of an object. This is at the output stage, but 

where RADAR data can / could be improved we will need expert consultations. One point is how the RADAR unit is 

mounted and calibration. Public datasets are curated, making the datasets cleaner. This is important when releasing 

a dataset for experimentation. Remember 80% of the time one performs less useful work, hence the work in a public 

dataset, however, these may not include lots of extra work needed in a real scenario. Curated (nuScenes) versus 

non-curated (FGI) artificial data (Warwick simulator), often clip long range sensing (LiDAR and RADAR). Now we 

fuse data as separate streams, there is a philosophy where data can be collected from all sensors and fused in a 

single pass. This will be investigated later in the project and is one branch in the MMdetection3D dataset. Datasets 

for cars versus trucks. One concern from the data gathered is that we are using data gathered from vehicles, thus 

far. However, other WPs will produce data from a truck setup. This will enable ROADVIEW to assess the view from 

the correct point of view. It will also be an opportunity to create a unique dataset.  

Future Work 

Some of the next steps were covered in the executive summary at the beginning of this deliverable. That said, this is 

the initial dataset evaluation, with 1 internal (FGI) and 1 external (NuScences) dataset looked at. Most of the work 

has been with the image quality, and the LiDAR data from FGI using OpenPCDet. The future is to consider additional 

methods and datasets, from those we have selected. Development of the DRL concept will continue in the vein of 

additional parameters, and perhaps combining them into a class (e.g., a video). Finding scenes in public datasets 

that are the same or similar to those identified in WP2 will make interesting comparisons. Basically, the comparing 

use cases that the internal (ROADVIEW) project, with those already considered in external examples (Note: I am 

deliberating avoiding the EU-friendly expression “Use Case”).  

Conclusions 

This document fulfils two purposes the readiness level of the data used in ROADVIEW. It is primarily around the 

sensors autonomous vehicles will carry and use, their purpose, rates, format access and quality are discussed, 

mostly for the first less experienced user. Subsequent deliverables will go into more detail and start to annotate data 

sources and ultimately assign a DRL level. This is not the final result, an indication of where to improve the data 

where needed. Basically, more introspection will be needed, but will provide a convenient ‘score’. 

ROADVIEW goes beyond the State of the Art by not only applying the DRL concept (moving from Lawrence’s three 

bands to DRL) to the project datasets but also by using the largest set of ‘tests’ for each dataset. Data input and 

output rates will be managed by machine learning pipelines and complex issues, such as batching streamed data. 

ROADVIEW follows a holistic approach from the sensor hardware to the perception models presented to the decision-

making system. The context of each dataset as well as their usage in the ROADVIEW system integration will define 

all data quality assessments.  

Curated datasets such as nuScenes provide high quality data, however, are to some degree curated, for example 

the distance of the LiDARs is reduced to produce clear, less noisy point clouds. The real world and data are more 

complex with longer distances being detected.  
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