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Executive summary 

Objectives 

The objective of this deliverable is to describe and justify the data-driven weather noise model library published as 
part of D3.3. This library is published on the project's official GitHub (available at https://github.com/roadview-
project/data-driven-noise-models). It covers fog, rain, and snow conditions and Light Detection And Ranging (LiDAR), 
camera and RAdio Detection And Ranging (RADAR) sensors. 

 

Methodology and implementation 

The data-driven noise models are based on the following principle: natural data with and without degraded weather 
is used to determine the noise added by the weather using a machine learning method. The decision was made to 
treat the case of camera, LiDAR and RADAR independently, as the input data is very different. For cameras, a Cycle-
GAN method was used to process the images in their entirety. For LiDAR and RADAR, a point-by-point classification 
method based on the notion of vanishing distance was created. The training data used are public images collected 
by CE in the case of the cameras, and data acquired by CE on the Puy-de-Dôme (PDD) site (France) during the 
2022-2023 and 2023-2024 winters (created as part of T3.2). 

 

Outcomes 

Concerning cameras, the Cycle-GAN method was implemented for the different weather conditions, with the 
possibility of giving intensity classes. Some of the results show the relevance of data-driven models, which in the 
case of snow make it possible to simulate all the associated effects. This is a counter point to just simulating the 
snow falling from the sky. For example, this method allows the removal of leaves from trees, snow on the ground 
including vehicle tracks. Concerning LiDARs, the point-by-point method based on the vanishing distance makes it 
possible to reproduce the three weather conditions, by specifying the exact desired intensity of the weather. Finally, 

this report shows that RADAR is insensitive to weather for the tested adverse weather intensities. 

 

Next steps 

The next step is to validate the models developed during T3.4. This validation will be carried out on data from the 

REHEARSE database (created as part of T3.2). This work will be promoted through the publication of scientific 

articles on the various models developed. Finally, some data and camera models prepared in Task 3.3 will be reused 

in Task 5.2 on camera-based measurement of weather conditions. 

  

https://github.com/roadview-project/data-driven-noise-models
https://github.com/roadview-project/data-driven-noise-models
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1 Introduction 

The perception system used in the ROADVIEW project consists of cameras, LiDAR, and RADAR. WP3 aims to 
provide a complete simulation chain, spanning from perception to vehicle dynamics on one hand, and including 
adverse weather conditions on the other. WP3 aims to propose two variants of noise models: a physics-based variant 
(T3.4) and a data-driven variant (T3.3). These models adverse weather conditions considered are fog, rain, and 
snow. In this, we propose here three noise models (camera, LiDAR, and RADAR) that consider these three weather 
conditions. 

The physic-based models use physical laws to simulate the impact of weather conditions. This document then 
focuses solely on the data-driven solution. The data-driven models are based on optimization methods (machine 
learning) using real data with and without degraded weather conditions. From a "clear weather" sub-dataset and a 
"degraded weather" sub-dataset (i.e., fog, rain, or snow), it is indeed possible to learn the impact of harsh weather 
on the sensor. As shown in Figure 1, the principle of the data-driven model is the same regardless of the sensor.  

 

Figure 1: Schematic diagram of data-driven models. By comparing data with different weather conditions, the algorithm 

can learn to simulate the weather. 

The modelled sensors (camera, LiDAR, and RADAR) have different sensing principles, therefore, different models 
have been chosen for each. Cameras, on one hand, use pixel matrices, containing colour information and no distance 
information, with very high spatial coherence. Conversely, LiDAR and RADAR use point clouds, unordered, 
containing only a reflectivity value (in the case of LiDAR, Radar has RADAR Cross section (RCS) and velocity) and 
distance information, with relative spatial coherence. Moreover, in the case of cameras, it is possible to access large 
image databases (as will be described later), whereas for LiDAR and RADAR (specially the 4D RADARs used by the 
ROADVIEW project), there are very few public datasets available, and we must therefore optimize models from our 

own database, limited in volume.  

Furthermore, LiDAR and RADAR, not being based on the same wavelengths, have completely different 
characteristics in terms of precision/sensitivity to weather. Thus, the decision was made to create independent and 
fundamentally different models for the three modalities.  

This report presents the data-driven noise models developed as part of the ROADVIEW project. Particularly, it 
describes the library published as part of D3.3. This library is published on the project's official GitHub1, deployed as 
part of the project's WP3. After training, the noise models obtained are compared visually with real data. This 
comparison was carried out both on the databases collected by CE and on the REHEARSE database (created as 
part of task 3.2 - D3.2). The precise validation of the models, using dedicated metrics, will then be carried out as part 
of task 3.4 with data from the REHEARSE database. This report is divided into three parts, one for each sensor 
model created. Each part is equally divided into 6 subparts, starting with a literature review, followed by the model 
description, and analysis of available datasets, the results follow the discussion of the implementation and finally the 
discussion on the model. 

 

  

 

1 https://github.com/roadview-project/data-driven-noise-models 
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2 Camera 

In this part, the goal is to realistically change the weather of a clear weather camera image by adding rain, snow, or 
fog at various intensities. It is important here to specify what we mean by realistic. As mentioned in the introduction, 
there are two main methods for altering the weather in an image: physic-based methods and data-driven methods. 
Both approaches model the weather phenomenon and then use computer vision techniques to replicate it on an 

image. 

Physic-based methods examine how the weather phenomenon affects light reflected by objects, based on specific 

physical laws, and then propose a model that can be coupled with computer vision techniques to reproduce the 

phenomenon on images. This approach starts with a certain understanding of the underlying phenomenon causes. 

In this sense, it contrasts with the second family: data-driven methods.  

Data Driven methods completely abstract the causes and adopt a machine learning approach, treating the weather 

phenomenon as a random experiment whose universe is the set of all possible manifestations or realizations of the 

phenomenon.  

In this work, since we observe these manifestations through images captured by cameras, the universe includes all 

possible images of the weather phenomenon, such as all possible images of rain. Statistical modelling then aims to 

find the law of this random experiment, i.e., a function to estimate the probability of producing a given rain image. In 

theory, this involves using a sample of rain images and statistical functions to infer this law. These estimators must 

be consistent, meaning that the larger the sample size, the closer we get to the true law of the data. Once this 

modelling is achieved, computer vision methods can be used to reproduce the weather phenomenon. This is the 

approach we focus on. The weather phenomenon reproduction on an image is realistic if it is close to what we would 

likely have obtained if the image had been captured by a camera at the moment the phenomenon occurred.  

We will show that data-driven modelling poses certain challenges, but a number of paradigms based on deep neural 
network learning enable us to reproduce weather phenomena while avoiding us from statistically evaluating the 
realistic nature of the results obtained. The following section proposes a literature review, followed by the model 
description, and analysis of available datasets. Section 2.5 presents the results before the discussion on the model. 

2.1 Literature Review 

In general, in a scene where it rains, objects tend to be much more reflective because they are soaked with water. 
Similarly, in a scene where it snows, they will be covered with snow (white appearance), etc. Just as two painters 
can represent the exact same scene with styles unique to each (appearance of objects), two different weather 
conditions give the same scene different appearances or styles. Thus, our issue fits into a well-known method in 

artificial intelligence and computer vision, known as style transfer. 

 

Figure 2: The aim of the data-driven camera model is to switch from clear weather to different harsh weather conditions 

(fog, rain and snow). Sun image is real, fog, rain and snow images are generated. 
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Figure 2 illustrates the aim of data-driven noise model for camera. In this figure, we can see the exact same scene 

with only the weather condition differing. The observation is clear: the objects or things present in the three scenes 

remain the same, what changes is their appearance. 

Style Transfers involves moving from an image expressed in one style to another while preserving the content. This 
implies, in each image, being able to distinguish what pertains to the content from what pertains to the style or 
appearance of the objects present in the image. Recently, this field has seen rapid advancements, as shown in Table 
1. In 2016, the method proposed by Gatys et al. [1] allows changing the style of an image to the style of a reference 

image using the intermediate layers of a neural network.  

 

Table 1: Summary of transfer style methods identified in the literature. 

Algorithm name Year REF Paired database Weather-

specific 

Type 

Neural style transfer 2016 [1] Yes No GAN 

Pix2Pix 2017 [2] Yes No GAN 

CycleGAN 2017 [3] No No GAN 

CUT 2020 [4] No No GAN 

Weather GAN 2021 [5] No Yes GAN 

TPSeNCE 2023 [6] No Yes GAN 

CYCLE-DIFFUSION 2022 [7] No No DIFFUSION 

Zero-shot contrastive loss 2023 [8] No No DIFFUSION 

GInStyle 2023 [9] No Yes DIFFUSION 
 

In a neural network, the first layers can extract features related to the style of the image while those closer to the 
output capture features related to the objects. Thus, by passing two images of different styles through the same 
neural network, we can dissociate their style from their content and then make a mix by linking the style of one to the 
content of the other. This method, named "neural style transfer," produces visually interesting results but is not 
suitable for the task we aim at. Indeed, as we have already mentioned, a good statistical/machine learning method 
is one that improves as the quantity of data increases. However, with "neural style transfer," increasing the data 
quantity will have no effect, as this method can only transfer the style of one image to another. 

Other algorithms have been developed to allow the style transfer of a group of images to another group. The neural 
network Pix2Pix [2] is one of the first successful methods of style transfer using Generative Adversarial Networks 
(GAN). An example of this is to transform sunny images into rainy ones. For this operation, we start by creating a 

database containing the same scenes photographed both in good weather and under rain, as shown in Figure 3. 
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Figure 3: How a GAN works. Using two databases with different styles, a generator creates generated images, while a 

discriminator determines whether the image is real or fake. 

In this system, the GAN discriminator analyses pairs of real images — one sunny and the other rainy. It learns not 
only to recognize that rainy images are realistic but also to ensure that both images in each pair represent the same 
scene. At this point, the generator comes into play: it takes the sunny image and transforms it into a rainy version. 
This transformation is guided by the teachings of the discriminator, which checks that the transformed image remains 

true to reality and the original scene, thus ensuring content coherence. 

Pix2Pix is considered very effective among style transfer methods based on GANs. However, the major difficulty lies 
in creating the necessary databases. For example, for a style transfer from horse to zebra, you must find pairs of 
images of horses and zebras that resemble each other except for the colour of their fur. Similarly, recreating exactly 
the same scene with only weather variations can be complex. The algorithm needs to be able to identify variations 
linked solely to the weather. Conversely, the algorithm must not modify the other stylistic elements of the image, such 

as buildings, vegetation, etc. 

We have thus explored algorithms capable of transferring the style of one group of images to another without requiring 
corresponding pairs of images. For example, these algorithms can transform sunny images taken in Paris using rainy 
images from Rome. Two techniques exist: the "contrastive-unpaired-images" (CUT) [4] and the CycleGAN [3]. The 
CUT works using both GAN and contrastive learning. This approach uses the conditioning of the GAN to change the 
style of images while preserving their content through contrastive learning. Whilst in the domain of style transfer, the 
contrastive aspect is implemented by comparisons made between selected pieces of a source style image and those 
transformed by a GAN. This process aims to make the content of the transformed pieces similar to the originals, 
while ensuring they are distinctly different from those from other images in the database. 

CycleGAN uses two distinct GANs, for example: one transforms sunny images into rainy ones, and the other does 
the reverse. This approach allows for an efficient transfer between two styles. To preserve the original content of the 
images during the transfer, CycleGAN incorporates a technique called 'cyclic coherence error'. This technique is 
based on the idea that applying the two transformations (sunny to rainy, then rainy to sunny), the resulting image 
should resemble the original image. We have experimented with these methods to change the weather aspect of 

images. 

Our tests reveal that although both algorithms allow style transfer, they can also create artifacts in the images. 
However, images from CycleGAN method are of better quality than those produced by CUT method. Zheng et al. 
[10] present an improved version of the CUT that minimizes artifacts and improves rain intensity control, but this 
technique requires image segmentation, making the process complex. Similarly, Li [5] proposes a method based on 
GANs that aims to change the weather in an image using attention mechanisms. These methods, focusing on the 
same issue as ours regarding weather simulation, are interested in extracting weather features in the downstream 
image. These two recent methods focus more on working out the structure of the networks used than on the learning 
process. On the other hand, in order to take better advantage of the training data, and to get as close as possible to 
a paired learning database, like in Pix2Pix, we have developed an innovative learning method called 'Paired Image 
Subgroups to Image Subgroups' (Group2Group). This method, which optimizes data selection for learning, 
significantly reduces artifacts, both for CycleGAN and CUT models. Moreover, it opens the door to various 
applications in style transfer, such as transferring a style to several merged styles or step-by-step denoising. 

There is another category of transfer-style methods: diffusion models. Yang et al. [8] propose an approach that 
combines Zero-Shot learning and contrastive learning to perform style transfer using diffusion algorithms. This 
second category of models seems promising and offers beautiful perspectives. However, these methods are 
generally more cumbersome than methods based on GANs and we will see that the latter are sufficient to solve the 
problem posed. In addition, the use of the GAN discriminator will enable us to detect weather conditions by camera, 
as part of task 5.2. This explains the decision to leave aside diffusion models and to focus on GAN methods here. 

In conclusion, our literature review has led us to adopt the CycleGAN model with the method Group2Group to develop 
our models aimed at modifying the weather on an image. These two elements are described in detail in the next 
section. 
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2.2 Model Structure 

2.2.1 CycleGAN Model 

The CycleGAN model proposed by Zhu et al. [3] enables the transition between sets of images of different styles, 
such as a set of rainy images and another of sunny images. It utilizes two GANs to convert images from one set to 
the other. For example, one GAN transforms sunny images into rainy images, and the other does the reverse, as 
shown on Figure 4. To preserve the content of the images while changing the style, the model incorporates a "cyclic 
consistency error", as shown on Figure 5. This error ensures that the composition of the mapping functions, 
performed by the GAN generators, is identical to the identity. 

 

Figure 4: CycleGAN method operating principle 

 

 

Figure 5: CycleGAN method operating principle: cyclic consistency error 

The structure of the CycleGAN that we used for our training is the one described in [3], and the learning error used 
is “Least Squares GAN” [11]. 

One can say that the goal of the CycleGAN is to find an isomorphism between the two data sets. However, in our 
case, by taking two images at random from each of the two groups in the database (one in clear weather, and the 
other in rainy conditions, for example), it happens that the elements that differ are not only linked to the weather. For 
example, this may be the case when one image contains trees and the other does not. This can bias the learning, as 
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discussed in the section 2.4.2. Then, we propose a method of selecting training data that reduces possible 
isomorphisms and as we will show, significantly improves the simulation results. This method is presented in the next 
section. 

2.2.2 Paired Image Subgroups to Image Subgroups (Group2Group) method 

As previously mentioned, when wishing to apply a style transfer between two data sets, two main methods using 
GANs are available: one using paired images with the Pix2Pix network [2] and the other using unpaired images with 
CUT [4] or CycleGAN [3]. The unpaired methods simply require two groups of images of different styles. However, 
for the ROADVIEW project, the weather conditions we wish to simulate must be specific to road contexts and viewed 
from a vehicle. This significantly limits the usable data among those we have collected. Since data is crucial in artificial 
intelligence, exploiting all available data is a major advantage, especially in a project aiming to simulate reality. We 
have therefore chosen to use all available data, whether road-related or not, to train an initial model. Then, we will 
refine this model by specializing it with data only from road scenes and from the perspective of a vehicle. This 
approach, common in artificial intelligence, tends to yield better results especially when data are limited. However, 
we encountered a major problem: the perception of weather conditions like rain or snow differs significantly between 
pedestrians and vehicles, as illustrated in Figure 6. 

Pedestrian point of view Car point of view 

  

Figure 6: Difference in point of view and impact of the weather for an image from the point of view of a pedestrian and a 

vehicle. 

Training methods for CUT and CycleGAN networks can introduce mixes between different viewpoints and contexts 

during style transfer, as shown in Figure 7 (forest vs. city). We believe this can cause artifacts and sometimes 

distortions. Indeed, if during a training period, the network learns to switch from sunny weather conditions to rainy, 

while changing from a pedestrian perspective to that of a vehicle, these viewpoint changes can affect the final style, 

particularly creating distortion effects, as shown on Figure 8. In this figure, for example: buildings appear in the sky, 

red reflections appear all over the floor. 
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Figure 7: Example of a group of images that pose a problem during transferring styles with images from different 

sources. 

 

  

  

Figure 8: Example of distortions obtained with training in the Group2Group method. 

The concept of style is quite broad. It encompasses aspects such as viewpoint, the structure of buildings, etc. A 
particularity of style transfer algorithms, like CUT or CycleGAN, is their ability to automatically determine the elements 
that characterize style and those that define content in two data sets. Generally, if a subset of data includes images 
that share common features — not related to the weather, such as the angle of the shot or the architecture of 
buildings, or even the dominant presence of greenery in a forest — these elements are considered as part of the 
style of that subset. For example, whether the weather is sunny or rainy, buildings in Paris typically have a 
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Haussmann style, while in London, they are mostly Victorian. If our algorithm associates these characteristics during 

learning, it could learn to recognize and transfer these architectural styles. 

 

Figure 9: Parallelization of subgroups with specific places captured in different weather conditions 

Our tests have revealed that, in certain scenarios, the style transfer of an image is affected by the specific subgroups 
to which it belongs and by the associations that form fortuitously during training. It is crucial to note that ideally, the 
only differences between the subgroups encountered during training should concern the weather conditions. This 
condition is essential because algorithms like CUT or CycleGAN, which automatically determine the constitutive 
elements of style, are not ideally suited for tasks where the style to be transferred is as specific as weather conditions. 
During training, we thus create precise correspondences between different subgroups arising from two distinct 
weather conditions. Ideally, these subgroups must be differentiated solely by their weather conditions. We have 
named this method "Paired Image Subgroups to Image Subgroups" (Group2Group), as shown in the Figure 9. 

This method of selecting pairs for training ensures that the main difference between two subgroups is their weather 
condition. We will demonstrate further that learning based on these subgroups forces the network to condition the 
style transfer to the subgroups of origin and destination. This approach not only improves the realism of the results 
obtained but also opens the door to new possibilities previously unexplored: such as transferring two styles to a group 
of images, for example assigning rain and snow to a group of images, enhancing denoising by training through 
denoising with multiple styles, ... 

2.3 Dataset 

For training the camera data-driven models, we utilize two main types of databases: public databases from research 
similar to ours, and those developed by CE. Among the public databases, we particularly use Image2weather [12], 
which contains 183,798 images, and the Multi-Class Weather Dataset [13], with 1,094 images. However, the 
disorganized format of these databases presents a challenge for our Group2Group learning method, as it is difficult 
to form subgroups differentiated primarily by their weather conditions. To address this issue, we have created two 
new databases tailored to our method, both covering four weather conditions. The first one containing approximately 
700,000 images from roadside cameras. The second one is created from videos sourced from the internet, from 
vehicle and pedestrian point of views. The second database we created contains about 1,145,995 images. Figure 10 
presents examples of images from this vehicle and pedestrian cameras database. Thanks to these resources, we 
can form image groups that show the same location under different weather conditions, as illustrated in Figure 11.  
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Figure 10: Some images of CE’s vehicle and pedestrian database 

Another part of the task was to control the intensity of the weather conditions. To do this, we had to annotate our 
images to distinguish different weather intensities. Table 2 summarizes the databases used to train the data-driven 
camera noise models. The weather intensity classes have been defined by a panel of experienced observers. They 
are as follows. For clear: clear sky corresponding to blue sky without any cloud, overcast corresponding to grey sky 
or blue sky with some clouds. For rain: wet ground only (rainfall rate 5mm/h), medium (rainfall rate 20mm/h), and 
heavy (rainfall rate 40mm/h). For fog: light (Meteorological Optical Range (MOR) 400m), medium (MOR 200m), and 
heavy (MOR 30m). For snow: ground covered by snow only (rainfall rate 0mm/h), and heavy (rainfall rate 10mm/h). 
The validation database, which is completely independent, is the REHEARSE database. This database is not 
presented here because it was created as part of task 3.2 and will be used to validate the models as part of task 3.4. 

 

Figure 11: Group of images showing the same place in different weather conditions 
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For each training session, we have created a database with different subgroups. In these subgroups, we try to 
parallelize the scenes as much as possible. For example, sunny images of Paris vs. rainy images of Paris. Sunny 
forest image in Germany vs. snowy forest image in Germany. 

Database Clear Fog Rain Snow 

Clear sky Overcast Light Medium Heavy 
Wet 

ground 
Medium Heavy 

On 
floor 

Heavy 

MCWD [12] 500 500 500 500 

Image2We

ather [13] 
70501 45662 357 1369 1252 

Pedestrian 43035 208285 23818 23713 13840 5302 77740 72787 4764 26358 

Vehicle 82820 224239 6147 14390 22249 3242 26075 54175 2561 12744 

Roadside ~ 250000 ~ 250000 ~ 250000 ~ 250000 ~ 250000 

Table 2: Summary of image databases used to train data-driven camera noise models. 

2.4 Implementation details 

2.4.1 Technical details 

All the details about the model as well as the amount of data used and learning parameters are given on the GitHub 

repository. For some of the models, we first trained on all our data from pedestrian and vehicle viewpoints, and then, 

we fine-tuned the model on vehicle-type data only. In general terms, the models have 256x256 pixels input and 

output images. 

2.4.2 Sub-group method benefit 

The goal of this test is to demonstrate that algorithms struggle with style transfer when the contexts are very different. 
Thus, we created three datasets, each containing 700 items: the first groups images of a forest in clear weather (no 
precipitation), the second images of a large city in the rain, and the third images of the same city in clear weather 
(Figure 12). 
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Figure 12: Data used to demonstrate the need for the Group2Group learning method. 

When trying to transfer from the forest (sun) to the city (rain), we get the results in Figure 13 with the CycleGAN 

algorithm (CUT gives a similar result) then from the city (sun) to the city (rain). There are many observations, the 
results are generally of poor quality when transferring from the forest to the city and vice versa. It is observed 
that from the forest to the city the style transfer adds a lot of green. On the contrary, from city to city the results 
are generally of better quality. 

Without similar sub-groups With similar sub-groups 

  

Figure 13: Results obtained with group learning method on forest vs city data. 

Then, to achieve a successful style transfer, it is not enough to simply have sunny images on one side and rainy 
images on the other. The quality of the transfer decreases when the two groups of images are very different. As 
shown in Figure 13, when trying to transform rainy city images into sunny forest images, the excessive presence of 
green reveals that the algorithm associates this colour with the stylistic aspect of forests. This experiment also shows 
that the more similar the groups of images are, the more effective the transfer process is. However, with techniques 
like CycleGAN or CUT, there is a risk that two very different subgroups are randomly associated during training. 
Ideally, in our study, the image groups should differ only by the weather conditions, in line with the goal of the 

Group2Group method. 
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2.5 Results 

We present the results obtained with the Group2Group method for three types of weather conditions: rain, snow, and 
fog. For rain, we analysed three different intensities; for snow, two intensities; and for fog, three intensities.  

Clear Snow Rain Fog 

(Original) Medium Heavy Floor wet Heavy Medium Heavy 

       

       

       

Figure 14: Results obtained on some images from the CE vehicle database 

Upon examining the results in more detail, we notice many interesting effects. The algorithm turns on vehicle lights 
when there is heavy rain (Figure 15a). It changes the appearance of trees in snowy conditions (the leaves are 
removed as in winter) (Figure 15b). In addition, it is able to control the amount of snow on the road, by following the 

wear patterns on the road (Figure 15b). It is also capable of reproducing halo effects in fog (Figure 15c). 

  



 
Deliverable No. D3.3  Title 
Version 01   Library of validated statistical noise models 
Project no. 101069576 

Page 19 of 44 
 

 

 

 

 

a. 

 

b. 

 

c. 

 

Figure 15: Example of interesting side effects learnt from the data-driven noise model. 
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Clear Snow Rain Fog 

(Original) Medium Heavy Floor wet Heavy Medium Heavy 

       

       

       

Figure 16: Results obtained by data-driven noise models on the REHEARSE database. 

We also applied the models obtained to the images in the REHEARSE database (D3.2), as shown in Figure 16. As 
a reminder, this database will be used to validate the data-driven models in task 3.4. The following section discusses 

the camera noise models that have been developed. 
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2.6 Discussion  

We attempted to simulate degraded weather conditions such as rain, snow, and fog using the CycleGAN technique 
and the Group2Group method. The data-driven noise models developed can generate fog, rain, and snow conditions, 
with 3 classes of intensity available. The model learning phase required the aggregation of new databases including 
several hundred thousand images. The major advantage of the data driven models developed is that they allow the 
primary effects linked to the weather to be considered, as well as all the induced effects (such as changes in 
vegetation, changes in surface conditions, etc.). 

We obtained visually interesting results, although sometimes certain artifacts appear, as illustrated in Figure 17. 
These artifacts occur because we do not directly control which style elements the algorithm transfers from one group 
of images to another. Particularly when we have difficulties perfectly aligning the image subgroups, artifacts may 
manifest. Sometimes, even using the Group2Group method, it is challenging to achieve perfectly parallel subgroups 
where the only difference is the weather, which can also lead to artifacts. Moreover, although aligning the subgroups 
is not as complex as creating databases for Pix2Pix, it remains a challenge, as we observed during the simulation of 
fog. 

 

Figure 17: Some artefacts in simulated images 

Ideally, we would be able to more precisely influence the style elements that the algorithm transfers, to focus only on 
those that are relevant for our task, namely those related to weather conditions. There are primarily two sub-types of 

styles:  

1. Styles focused on form and structure: These styles concentrate on the representation of shapes, outlines, 
and textures. For example, in city, there are a lot of straight lines, and in forest, there are a lot of smooth 
curves.  

2. Styles focused on atmosphere: These styles emphasize intangible elements such as light and colour.  

The second type of style is particularly relevant to our work because it relates to the overall ambiance of an image. 
This classification helps us more precisely understand what defines the "style" of an image, distinguishing the 
influences of structure from those of the atmosphere. These distinctions are also useful for refining our approach to 
neural style transfer, allowing us to specifically target elements to manipulate or preserve in our models. 

In the technique of neural style transfer, it is possible to extract style features from an image from the lower layers of 
a neural network, which are associated with details such as the shape of objects, while features extracted from the 
upper layers relate more to the general ambiance, including weather conditions. We plan to conduct tests on the 
layers of the CycleGAN discriminator to identify those that best capture elements related to weather conditions. This 
work should also help reduce artifacts. It will be carried out as part of Task 5.2, on the detection of weather conditions 
by camera. 
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3 LiDAR 

3.1 Literature review 

As described in the introduction, the modelling of degraded weather conditions can be physics based or data driven. 
Physical noise models are widespread [14] [15] [16] [17] [18] [19]. [15] provides a state-of-the-art review of these 
models and proposes some measurements that validate the developed physical models. Real measurements are 
taken in chambers designed to generate fog and rain. But this kind of validation against real data is too rare [17] [19]. 
Another limitation of this type of model can be the computation time. The proposed models are often complex and 
can induce high computation times. Finally, this type of model often focuses only on the atmospheric part of 
hydrometeors. For example, they do not consider the internal algorithms of real sensors, which are often not even 
known. Moreover, changes in the reflectivity of materials are not always considered (due to wetness or snow 
covering). For instance, most models do not account for the fact that the ground is wet [20], unlike [21] which does. 

Thus, physic-based models can be partial if all the weather-related elements are not modelled one by one. 

The second part of the literature concerns data-driven models, also called empirical. This is the focus of our work, 
with physic-based models being the subject of task 3.4. Works on data-driven models are much less represented in 
the literature. Some studies only analyse the effects of weather on LiDARs without proposing an associated modelling 
[22] [23] [24] [25]. These studies concern the effects of fog and rain. In addition to most models, [26] [27] consider 
the spray phenomenon (water thrown by vehicle wheels) rather than the atmospheric part (falling raindrops). To our 
knowledge, only one reference proposes work similar to ours. It is a model based on a CycleGAN [28]. As this type 
of model requires a lot of training data, the learning was conducted on the LIBRE dataset [29]. This dataset is created 
in weather conditions simulated in rain and fog chambers. The main limitation is that the model is learned on unnatural 
data, unlike what we propose. Furthermore, the intensity levels are fixed and the authors report that they make 
significant errors for extreme weather conditions. Finally, the real-time aspect is not guaranteed with this type of 
model with current computing power. Our model takes a different approach by processing data ray by ray, as shown 

in the following section. 

 

3.2 Model Structure 

We propose a noise model to simulate the impact of weather on LiDAR data acquired in clear weather conditions. 
This model operates on a ray-by-ray (point-by-point) basis, meaning it does not process a point cloud as a whole. 
This approach, which diverges from the only similar works we have found in the literature [28], is inspired by physical 
phenomena. Indeed, for weather simulation, we are not dealing with a scenario where the geometry of the scene is 
important. For example, for segmentation, it is necessary to consider the point cloud as a whole to process it, due to 
the need to account for coherence between nearby points. Here, we are dealing with a phenomenon that impacts 
points indiscriminately from one another, as the weather is considered homogeneous within the LiDAR's acquisition 
space. Adopting this assumption allows us to overcome a major problem concerning data quantity: instead of having 
X point clouds (thus X elements for learning), we benefit from X x 26,700 elements (since there are about 26,700 
points in a minute-long point cloud) for learning. This enables us, with real data collected over a winter, to have 
enough data to conduct the training. Another advantage of this point-by-point method is that it is less costly in terms 
of computation time and can be parallelized for real-time processing in the future. This method, which does not take 
account of geometric appearance, has a few disadvantages: scenarios involving localised spray behind vehicles will 
not be simulated; similarly, ground reflections (puddles or wet ground) are only partially addressed. 

The method used is based on observations made in the state of the art and our data. Figure 18 presents, as an 
example, an average point cloud acquired in clear weather and an average point cloud acquired in foggy weather. 
The literature [29] [28] [25] notes that several phenomena are observed when LiDAR encounters degraded weather, 

and they are present on the Figure 18: 

1. The most distant points or those with low reflectivities disappear. For example, in Figure 18a , it can be seen 
that the points between 50 and 60m in the 45° - 90° quarter are present in clear weather but disappear in 
fog. 

2. The more intense the weather, the more points disappear. This is also observed in our data, although the 
figure does not show it. The classification results from part 3.4.3 will demonstrate this. 

3. Some points remain unaffected by the weather. This is the case in Figure 18b, where it can be seen that 
between 6 and 10m, in the 280°-340° quarter, the points of the scene are present with or without fog. 
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4. A sparse "ghost" point cloud close to the LiDAR sometimes forms within the 3-10m range. This is shown in 
Figure 18b and occurs for intermediate fog. This cloud can be simply filtered because the reflectivity of the 
concerned points is low. 

5. A dense ring of "wall" points forms just around the LiDAR <3m. This is shown in Figure 18b and occurs for 
denser fogs. This cloud can be simply filtered because it is abnormally close to the LiDAR (in a road context, 
targets less than 3m are not possible). 

 

Figure 18: Example of a point cloud in clear and foggy conditions. Bird-Eye-View (BEV). 

The proposed model thus processes each point in the point cloud individually. For each point, as shown in Figure 
19, it first classifies the point as 'no change' or 'disappear'. To do this, we calculate the vanishing distance of the 
point, similarly to a previous study [25]. The calculation of the vanishing distance is detailed in section 3.4.3. The 
inputs for classification are therefore the distance, the reflectivity of the point (in clear weather), and the intensity of 
the weather. Note that the azimuth and vertical angle are not changed during the process. With this method, we 

achieve different behaviour for each of the two classes: 

- ‘No change’: neither the distance nor the intensity of the point is changed. 

- ‘Disappear’: the point is removed from the cloud. 

It is then possible to add points of the type "Ghost point" or "Fake wall". However, although these have been 
characterized in section 3.4.5 for the LiDAR we used (VLP16), they are not added to the final model for two reasons: 

they are very easily filterable, and some LiDAR models natively filter them. 

 

a. Global view b. Zoom in 
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Figure 19: Diagram of the algorithm structure used to simulate degraded weather conditions on a LiDAR point. Note: this 

method is applied independently to each point of the complete point cloud. 

This section has thus shown the method used to model degraded weather (fog, rain, snow) on LiDAR data acquired 
in favourable weather conditions. This data-driven method requires a significant amount of data for training. The 

following section shows what data are used. 

3.3 Dataset 

The database used for training was created by CE as part of the ROADVIEW project. It consists of data acquired at 
the summit of PDD, France. At the PDD site, see Figure 20, CE has installed camera, RADAR, and LiDAR sensors, 
as well as weather sensors. The installed weather sensors allow for the classification of weather (clear, fog, rain, 
snow) and for characterizing the intensity of the weather (MOR or rain intensity). Sensor data are collected at a rate 
of one measurement per hour. Each LiDAR measurement lasts one minute. The weather present during the sensor 
recordings is also recorded. For the LiDAR, data from the winter of 2022-2023 were used. 

 

Figure 20: Presentation of the PDD site. The LiDAR is installed to capture surrounding objects and empty space. The 

presence of weather sensors installed by CE to characterize the weather during LiDAR recordings is also visible. 

 

Figure 21: Average point cloud resulting from the measurement campaign, in BEV. It can be seen in the point cloud that 

in the presence of degraded weather, a phantom point cloud is created around the LiDAR, within a close disk with a 

radius of less than 8m. 
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For the winter of 2022-2023, the following weather sensors were used: Vaisala PWD12 (rain, snow, fog), Luft VS2K 
(fog), and Vaisala WXT530 (rain). This combination of sensors allows for redundancy in measurement to compare 
measurements and maintain continuity in case one of the sensors fails. Indeed, the site is difficult to access during 
winter, and maintenance is not always possible. 

The database contains 2 723 LiDAR point clouds, each lasting one minute. For each point cloud, the weather is 
known. Therefore, we classify the point clouds to retain 4 groups: clear weather, fog, rain, and snow. Some point 
clouds are discarded because they do not fall into any of the 4 categories. 

For clear weather, only point clouds with the following characteristics are kept: 

PWD12_Weather Type = "Clear" 
PWD12_Rain intensity (mm/h) = 0 
WXT530_Rain intensity (mm/h) = 0 

VS2K_MOR (m) >= 2000 
PWD12_MOR (m) >= 2000 

There is neither fog (MOR>0) nor rain (Rr=0) in the case of clear weather. Moreover, the weather sensor announces 
clear weather. For rain, only point clouds with the following characteristics are kept: 

PWD12_Weather Type = "Rain" 
PWD12_Rain intensity (mm/h) > 0 

For rain, it is verified that the weather sensor announces a rain intensity and detects rain. For fog, only point clouds 

with the following characteristics are kept: 

PWD12_Rain intensity (mm/h) = 0 
WXT530_Rain intensity (mm/h) = 0 

VS2K_MOR (m) < 400 
PWD12_MOR (m) < 400 

ABS(PWD12_MOR (m) - VS2K_MOR (m))<=60 
For fog, the consistency between the two visibility sensors is checked, and it is ensured that there is a MOR below 
400m. This value is chosen because it defines the presence of fog in road context according to standard NF P 99-
320. For snow, it is ensured that the weather sensor announces the presence of snow. 

PWD12_Weather Type = "Snow" 

The conditions on snow are more lenient, as the occurrence is much less frequent. 

After performing the classification using weather sensors, data from three cameras (in three directions) were used to 
visually validate that the data are correctly classified. This step allows for the removal of point clouds misclassified 
by the weather sensors. For clear weather, visual validation helps keep only point clouds where the ground is dry (all 
point clouds with wet ground are removed). Similarly, all weather conditions where the weather is overcast are 
removed to ensure ideal visibility conditions. Conversely, for rain, only images with rain and wet ground are kept. 
Images where snow is present are removed. Similarly, for snow, only the point cloud where there is actually snow in 
the atmosphere and on the ground is kept. Following this classification work into four weather groups, groups of point 
clouds are listed in Table 3. As shown in the table, visual filtering eliminates many cases where the weather is poorly 
measured by the sensors. Weather measurement at extreme sites like PDD is challenging, and visual validation is 
therefore important. In the end, there are 45 point clouds distributed into four classes. Thanks to our ray-by-ray based 
model, these data are sufficient to conduct training as shown in section 3.5. Before this, some technical details are 
given in the following section. 

 

 Before video filter After video filter 

Clear 49 5 

Rain 25 11 

Fog 40 28 

Snow 6 1 

Table 3: Number of point clouds available in the database, by weather, for the winter 2022-2023. 
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3.4 Implementation details 

3.4.1 General Approach 

Firstly, it's important to note that one separate model is created for each weather condition, resulting in three LiDAR 

models (for rain, fog, and snow). All developments were performed in Python. 

To carry out the training, clear weather data and degraded weather data were paired by direction (azimuth and 
vertical angle pairs). As shown in Figure 22, for each direction in clear weather, points in the same direction from 
other timestamps (e.g., during fog) were paired. This method thus allows for the creation of tuples (Clear Weather 
Distance, Clear Weather Reflectivity, Weather Intensity, Degraded Weather Distance, Degraded Weather 
Reflectivity), where Distance is the distance of the point detected by the LiDAR and Reflectivity is the reflectivity of 

the LiDAR point. These tuples with 5 values therefore contain 3 input data and 2 output data. 

 

Figure 22: General principle of the proposed data-driven model for LiDAR 

Following this association of clear and degraded weather data, the points were classified according to the two classes 
defined in the method, as shown in Figure 23. The goal of the proposed method is to find the vanishing distance as 
a function of the weather intensity and the LiDAR reflectivity, as explained in section 3.4.3. Before presenting the 
results, it is important to better qualify the database from a weather perspective. 
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Clear weather Fog conditions Classification 

 

Figure 23: Classification of 'no change' or 'disappeared' points, for three levels of fog in BEV. MOR from top to bottom: 

50-75m, 75-100m, 100m-200m. Black point cloud in clear weather, grey point cloud in fog, green point classified as 'no 

change' and red point. 
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3.4.2 Weather intensity definition for the three classes 

The next step is to define a weather intensity for each of the three weather conditions. For calculating the vanishing 
distance, the MOR recorded during the event is used regardless of the weather class. Indeed, rain and snow are 
sometimes measured in resultant MOR [30], and it turns out that this measure correlates better with vanishing 
distance in our case [25]. From theory point of view, this is logical because the LiDAR's laser beam is attenuated by 
the weather, hence the MOR based on a transmission rate is perfectly correlated with this. Then, Figure 24 is showing 
the MOR distribution of the three classes in the database. 
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Figure 24: Histogram of MOR on the LiDAR training database (PDD winter 2022-2023). 

It is observed from the graphs in Figure 24 that the data are well-distributed for fog and rain with values ranging from 
50m to 175m. However, for snow, there is a lack of data to have something truly representative. The available 
database necessitates the use of a vanishing distance calculation model capable of extrapolating beyond the 
available data range. Indeed, fog validation trials are conducted on data ranging from 10 to 50m, yet there are no 
training data available in this range. The chosen model is therefore based on linear regression, which allows for this 
extrapolation, as will be explained in section 3.4.3. 
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In the case of rain and snow, the data available in the REHEARSE (D3.2) validation database is not MOR but rain 
intensity. For this, we propose converting rain intensity into MOR. This conversion is derived from measurements 
made within the PAVIN platform for creating the REHEARSE dataset. The conversion formula is as follows: 

MOR = -0.8308 * Rainfall rate+ 159.16 

where MOR is expressed in m and rainfall rate in mm/h. 

It is obtained by regression on the data from the REHEARSE validation database, as shown in Figure 25. 

 

Figure 25: Conversion of rain intensity into equivalent MOR using data from the REHEARSE database. 

3.4.3 Method to estimate Vanishing Distance 

To estimate the vanishing distance, we propose plotting 'no change' and 'disappear' points on Figure 26. On this 
figure, we plot the distance of the LiDAR point according to the intensity of the weather, colouring it by its class ('no 
change' or 'disappeared'). From the figure, it is clear that there is a strong relationship between the intensity of the 
fog and the vanishing distance. The vanishing distance is represented on this figure by the boundary between the 
two sets of points 'no change' and 'disappeared'. To automate the detection of this boundary, we propose the 
following method: 

- For each MOR, we retrieve the 0.99% quantile (to exclude outliers). These points are marked in black on Figure 

26. 

- We calculate the linear regression curve of the obtained points, resulting in the grey line on Figure 26. We set the 

interception of this line to 0 because theoretically, the vanishing distance is zero for an MOR of zero. 

- Finally, we will use the slope of the obtained curve, which we will call the vanishing slope in the following, to find 
the vanishing distance from the MOR when using the model. This vanishing distance will be used to classify points, 

as explained in section 3.2. 
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Figure 26: Method for determining the vanishing slope, on the fog class of the database. 

3.4.4 Details on points reflectivity 

It is interesting to consider whether the reflectivity of the LiDAR point plays a role in the vanishing distance of the 
point. Indeed, in the previous section, all point reflectivities were mixed. To verify that reflectivity does not impact, we 
therefore propose to check the vanishing slope using points with specific reflectivity. The method from the section 

3.4.3 is therefore applied for points having reflectivities in the following intervals: 

We then plot the vanishing slope according to the LiDAR reflectivity on the Figure 27. From this graph, we observe 
that this slope is constant for snow. However, for rain and fog, we note that the vanishing slope is lower for lower 
reflectivities (<10). A lower vanishing slope means that the vanishing distance is shorter and therefore that the 
weather phenomenon has more impact on the data. Thus, for lower reflectivities, rain and fog have more impact. For 
this, the vanishing slope will be modulated for the case of rain and fog for reflectivities < 10. For snow, the vanishing 
slope will be considered as a unique value regardless of the point's reflectivity. Table 4 therefore summarizes the 
vanishing slopes for different weather conditions. 

 

 

Figure 27: Vanishing slope according to the reflectivity of the LiDAR point. 

 

 Vanishing slope 

 Point reflectivity < 
10 

Point reflectivity ≥ 
10 

Fog 0.30286536 0.34634364 

Rain 0.15688675 0.22530445 

Snow 0.32685039 0.32685039 

Table 4: Vanishing slope of the data-driven model for rain, fog, and snow. 

 

From the vanishing slope, we calculate the vanishing distance following the equation: 

Vanishing distance = Vanishing slope x MOR 
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And for rain and snow, we obtain the equivalent MOR through the equation given in section 3.4.2. 

3.4.5 Effect of ‘Ghost Points’ and ‘Fake Wall’ 

As mentioned in the introduction, the study of LiDAR has highlighted three phenomena: the vanishing of certain 
points, the appearance of ghost points (point cloud ‘ghostPoint’ on Figure 28), and the appearance of a ring / fake 
wall around the LiDAR (point cloud ‘fakeWall’ on Figure 28). The first phenomenon, the most significant, was treated 
and included in the model. The other two effects are characterized here. They were ultimately not added to the model 
because: 

1. the number of points is not high,  
2. they are not replicable across all LiDAR brands, and 
3. they are easily filterable because they represent very low point reflectivities. 

 

Figure 28: BEV view of the fog point cloud. The data have been classified using clear weather data into three classes. 

In the course of the analysis, it was possible to characterize ghost and ring type points. The distribution in intensity 
and reflectivity of these points could be plotted, as shown in Figure 29 in the case of fog and the distance of the point. 
Then, on this distribution, we chose to fit a Gaussian law. The obtained parameters are summarized in Table 5. 
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 Distance of the LiDAR point 

Figure 29: Histogram of the distance of the points from the ghost point cloud, which appears in fog conditions (blue). 

On this histogram, optimization with a Gaussian law was performed (red). 

 Fog Rain Snow 

Distance Reflectivity Distance Reflectivity Distance Reflectivity 

Ring Mean 1.308 1.461 1.282 1.912 1.549 2.688 

Std 0.172 3.055 0.212 3.119 0.380 6.077 

Ghost Mean 5.011 4.113 4.631 1.250 6.549 11.032 

Std 1.753 11.533 1.263 2.971 6.481 11.770 

Table 5: Coefficients of Gaussian laws optimized on the phantom and ring point clouds in the presence of degraded 

weather. 

Section 3.4 has presented the technical details of the implementation of the models. The following section therefore 
presents the simulation results obtained on some examples. As a reminder, the validation phase of the models is 

carried out within the framework of task T3.4, jointly with the physic-based noise models. 

3.5 Results  

3.5.1 Fog 

The results for fog data are presented using the databases from PDD and REHEARSE. Figure 30 shows the results 
obtained on the PDD database. In this figure, the clear weather point cloud is represented in black, the simulated 
data in blue, and the real data in orange. The figure includes fog at different levels chosen for MORs of 150m, 90m, 
and 60m. From the figure, it is evident that the simulated fog has a similar impact to real fog, with an increasingly 
strong impact as the MOR decreases. Subsequently, the noise model is applied to the test data from the REHEARSE 
database (D3.2). Since the model training was conducted on the PDD base, the results might be biased. Furthermore, 
the LiDAR model differs between the PDD database and REHEARSE, so it is interesting to verify if the behaviour is 
generally consistent. The results obtained on the REHEARSE database are thus presented in Figure 31. In this 
figure, 3 MOR levels (10, 20, and 50m) are depicted, featuring a scene containing a pedestrian and a cyclist at 15m 
from the LiDAR at the CE's PAVIN platform. Again, it can be observed in this figure that the effect of the simulated 
fog is similar to real fog. This also shows that the classifier based on a linear threshold retained allows extrapolation 
beyond the limits of the training database. Indeed, the strongest fog in the PDD database does not go below 50m 
MOR, whereas the data from the REHEARSE database (D3.2) are below that. Initial trials with more complex 
classifiers had shown significant limitations when extrapolating beyond the limits of the database. These visual results 
will be confirmed by a validation within the framework of task 3.4 of the project. 
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 Simulated Real 

MOR = 150m 

 

MOR = 90m 

MOR = 60m 

 

Figure 30: Results obtained by the fog data-driven noise model on LiDAR data of the PDD database, BEV. In black, the 

initial clear weather data; in blue, the simulated data with rain; in orange, the real data. 
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 Simulation Real 

Clear 

 

MOR = 50m 

  

MOR = 30m 

  

MOR = 10m 

  

Figure 31: Results obtained by the fog data-driven noise model on LiDAR (Ouster) data of the REHEARSE database. Left 

is the simulation output, right is the real. 
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3.5.2 Rain 

As with fog, a verification of the results obtained for rain was also carried out. Thus, Figure 32 shows the simulation 
results compared to real data from the PDD database. As with fog, it is evident that the model is capable of 
reproducing different levels of rain. Similarly, it appears visually that the results obtained from the REHEARSE 
database are consistent, as shown in Figure 33. On Figure 33, elements are present at a distance of 5m. These are 
the poles used to generate artificial rain. These initial visual results will be confirmed again, as for the fog, by a 
validation as part of task 3.4. 

 

 Simulation Real 

Rr = 5 

 

Rr = 105 

Figure 32: Model result on data from PDD, BEV. In black, the initial clear weather data; in blue, the simulated data with 

rain; in orange, the real data. Top line Rr = 5mm/h, bottom line Rr = 105mm/h. 
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 Simulation Real 

Clear 

 

Rr = 10 
mm/h 

  

Rr = 25 
mm/h 

  

Rr = 50 
mm/h 

  

Figure 33: Results obtained by the rain data-driven noise model on LiDAR (Ouster) data of the REHEARSE database. Left 

is simulation output, right is real.  
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3.5.3 Snow  

As with rain and fog, real and simulated data have been compared on the PDD database. The results obtained are 
shown in Figure 34. They show that the model corresponds well to reality. As a reminder, the snow conditions in the 
REHEARSE database are those acquired at PDD, hence the presence of a single figure in the case of snow. 

 Simulation Real 

MOR 
equivalent = 

125m 

 

Figure 34: Results obtained by the snow data-driven noise model on LiDAR data of the PDD database, BEV. In black, the 

initial clear weather data; in blue, the simulated data with rain; in orange, the real data. 

3.6 Discussion 

A new data-driven noise model has been proposed for LiDAR. This model is based on a point-by-point classification 
of the point cloud. This classification is based on the estimation of the vanishing distance, already identified in the 
literature [25] but never published as a model to our knowledge. This estimation was carried out on real fog, rain, 
and snow data, thanks to the collection of a new database at the PDD site (France). Visual comparisons of the 
simulation results obtained with real data show that the model appears to be in line with reality. These comparisons 
were carried out on data collected at PDD, but also on data from the REHEARSE database, developed as part of 
task 3.2. More detailed validation measurements will be carried out on the REHEARSE database as part of task 3.4. 

The advantages of the proposed method are numerous. First of all, it can be parallelized, and processing is not very 
time-consuming. This means that processing can be carried out in real time. Moreover, the training was carried out 
on natural data, which ensures that it is properly representative. Using a data-driven noise model also means that 
both the direct and indirect effects of weather change can be considered. For example, changes in surface properties 
are considered, as are atmospheric effects. Finally, the choice was made to carry out the training on one database 
(PDD) and the validation on a completely different database (REHEARSE). This bold choice is a guarantee of high 
validation quality, as there will be no possible bias effect. The limitation of the proposed model is that the training 
was carried out on a specific LiDAR model (VLP16). It could be interesting in future work to check the variability of 
the coefficients obtained on different LiDAR models. 
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4 RADAR 

4.1 Literature review 

Unlike LiDAR and cameras, which were discussed in the previous sections, the literature shows that RADAR is not 
or only slightly sensitive to degraded weather [31] [32]. As a result, very little work has been done on RADAR versus 
degraded weather conditions. As an example, [33] refers to 25 datasets containing RADAR data over the last ten 
years and only 2 of these ten show degraded weather conditions to our knowledge [34] [35]. As with other sensors, 
physical models and experiments do exist [33]. From a physical model point of view, the RADAR is only affected by 
heavy rain or heavy snow [36] [33]. [36] estimates from simulations that the detection range of RADAR can be 
reduced by 45% under severe rainfall conditions (150 mm/h), for a target such as a pedestrian, which is already tricky 
for RADAR under normal circumstances. This very high intensity of rain is, however, very rare in a concrete case, it 
corresponds to a huge storm peak, in which an automated vehicle would in any case have to come to an emergency 
stop. Limiting ourselves to extreme but realistic rain intensities for driving, the effect of rain does not exceed 20% for 
a pedestrian, and 8% for a car [36]. Regarding the impact of rain vs. snow, the literature is divided [31] with some 
explaining that the water content of snow has an impact on the severity on the RADAR, while others explain that the 
effect is identical between rain and snow. Concerning the experiments, [37] explains that the RADAR is not impacted 
by light rain and fog, that it is negligibly impacted by heavy rain and that it is only slightly impacted by snow. [38] [39] 
compares RADAR, LiDAR, and camera performances in simulated and real-world adverse climatic environments 

and concludes that RADAR outperforms LiDAR and cameras under the influence of rain. 

With the work of the ROADVIEW project, and the new database that has been created at PDD with the 4D ZF 
ProWave RADAR, the following section will show that the RADAR is effectively not affected by the usual degraded 

weather. 

4.2 Dataset 

A specific database has been set up to create a RADAR model. This database was recorded at the PDD site during 
the winter of 2023-2024. As shown in Figure 35, the ZF 4D RADAR was installed to complement the sensor suite for 
the winter of 2022-2023: a Velodyne VLP16 LiDAR, 4 webcams and a Canon Axis Q1656-LE camera. For weather 
measurement, the sensor suite for the winter 2023-2024 period was: OTT Parsivel (Rain/Snow), Vaisala PWD12 

(Temperature, Fog MOR, Rain/Snow), WXT530 (Rain/snow), and VS2K (Fog MOR).  

 

Figure 35: Sensors installed at the summit of the PDD for the RADAR measurement campaign (winter 2023-2024) 

During this test campaign, one measurement is taken per hour, with 1 min duration for RADAR, 1 min duration for 
LiDAR, and 1 snapshot with each camera. Data is classified automatically using the following criteria. For clear 
weather, only point clouds with the following characteristics are kept: 

Parsivel_Rain intensity (mm/h) = 0 
WXT530_Rain intensity (mm/h) = 0 

VS2K_MOR (m) ≥ 2000 
PWD12_MOR (m) ≥ 2000 
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There is neither fog (MOR>0) nor rain (Rr=0) in the case of clear weather. For rain, only point clouds with the following 

characteristics are kept: 

WXT530_Rain intensity (mm/h) > 0 
Parsivel_Rain intensity (mm/h) > 0 

Parsivel_Weather Type ≠ “Snow” 
 

For rain, it is verified that the weather sensor announces a rain intensity and detects that there is no snow. For fog, 
only point clouds with the following characteristics are kept: 

Parsivel_Rain intensity (mm/h) = 0 
WXT530_Rain intensity (mm/h) = 0 

VS2K_MOR (m) < 400 
PWD12_MOR (m) < 400 

 

For fog, it is ensured that there is a MOR below 400m. This value is chosen because it defines the presence of fog 
in road context according to standard NF P 99-320. For snow, it is ensured that the weather sensor announces the 
presence of snow. 

Parsivel_Weather Type = "Snow" 
PWD12_Temperature < 5°C 

 

The conditions on snow are more lenient, as the occurrence is much less frequent. 

After performing the classification using weather sensors, cameras were used to validate that the data are correctly 
classified, as described in section 2.3. Following this classification work into four weather groups, groups of RADAR 
point clouds are listed in Table 6. There has been a significant reduction in the number of data points because a 
number of visual filters have been put in place. Data has therefore been removed in the following cases: when the 
ground does not correspond to the weather (wet ground during snow or snowy ground during rain), when the cameras 
were too obstructed, or at night. The following section presents the analyses and results obtained from this database. 

 Before video filter After video filter 

Clear 341 74 

Rain 67 8 

Fog 140 18 

Snow 157 4 

Table 6: Number of point clouds available in the database, by weather, for the winter 2023-2024. 

4.3 Results 

As the literature shows that RADAR is very little affected by degraded weather, we decided to check this before 
setting up a model. The method presented in section 3.2 was reused on the RADAR data. As a reminder, this consists 
of classifying the RADAR points into 'no change' and 'disappeared' classes. It is then possible to check the rate of 
'no change' points and the impact of the weather on the RADAR. Table 7 therefore shows the 'no change' rate for 
LiDAR (using the data and procedure in section 3.4.1) and RADAR. The results are clear. While LiDAR is strongly 
impacted by weather, in particular for fog, RADAR seems insensitive to degraded weather. As Table 7 shows there 
are less than 5% of points impacted, whether it is rain, fog or snow condition. However, the uncertainty of the 
measurement is of the order of 3% according to the no-change rates obtained in clear weather. It is therefore possible 
to conclude that the RADAR is insensitive to the degraded weather conditions encountered in the database. It is 
therefore important to better characterize the weather conditions present into the database in terms of weather 
intensity in order to qualify the limits of this result. 

 LiDAR RADAR 

Clear 0.99 0.97 

Rain 0.85 0.97 

Fog 0.38 0.95 

Snow 0.70 0.99 
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Table 7: 'No change' rate for LiDAR and RADAR, for each weather condition. 

Figure 36 shows the histograms of weather intensity for the three weather conditions in the database. It can be seen 
from the figure that for rain and snow conditions, the intensities are fairly low with a maximum of 3mm/h. This 
corresponds to moderate rain according to the NF P 99-320 road standard. For fog, the MOR goes up to 50m, which 
still corresponds to fairly dense fog. The results obtained on the absence of impact from rain or snow are therefore 
in agreement with the literature for the intensities present in the database. Similarly, the result on the absence of 

impact of fog, whatever its density, is in line with the literature. 
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Figure 36: Histogram of weather intensities encountered in the database 

4.4 Discussion 

As far as RADAR is concerned, then, the weather has no impact according to our data. However, our database is 
limited when it comes to rain and snow, with intensities of up to 3mm/h. It is not possible with such data to extrapolate 
further, as has been the case with LiDAR. Other measurement campaigns should therefore be carried out to complete 
these results. However, the results obtained are in line with the literature on the field of study under consideration. 
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The conclusion is that the RADAR is insensitive to the weather, whatever the fog, and for precipitation intensities of 

up to at least 3mm/h for rain and snow. 

5 Conclusions 

This report presents how the data-driven noise models of the ROADVIEW project were produced. These noise 
models are published on the project's official GitHub2. They include models for cameras, LiDARs, and RADARs. They 
deal with fog, rain, and snow weather conditions. The choice was made to use different methods for each type of 
sensor in order to be better adapted to each data structure. For cameras, the Cycle-GAN model was chosen, with a 
new learning method called Group2Group. For LiDARs, a point-by-point processing method for the point cloud and 
vanishing distance estimation was used. Finally, it was shown that RADAR can be considered insensitive to current 
weather, in line with the literature. 

The learning phase for the various models was carried out on new data, collected specifically by CE as part of task 
3.3. These data were acquired in real conditions with natural degraded weather conditions. This aspect is very 
important, as it enables us to obtain models that are as natural as possible. 

After training, the noise models obtained were compared visually with real data. This comparison was carried out 
both on the databases collected by CE and on the REHEARSE database (created as part of task 3.2 - D3.2). The 
precise validation of the models, using dedicated metrics, will then be carried out as part of task 3.4 with data from 
the REHEARSE database. The choice was made to carry out the training on CE databases and the validation on a 
completely different database (REHEARSE). This choice is a good practice as there will be no possible bias effect. 

The advantage of the models obtained is that they can be used to specify a level of weather intensity. They can also 
be parallelized, which means they can be used in real time. Data-driven models have a major advantage over physic-
based noise models. Thanks to the learning phase, they take direct account of all the impacts associated with the 
weather (disturbance in the atmosphere, changes in the state of surfaces, other secondary parameters). This avoids 

the need to add layers to model each aspect theoretically, as would be the case with physics-based models. 

However, the models proposed here do have a few limitations. Firstly, the camera model only proposes weather 
intensity classes, and does not offer the possibility of choosing an exact intensity. In contrast, the LiDAR model allows 
you to specify a precise weather intensity. Secondly, data-driven models behave like black boxes, and there can 
sometimes be unwanted artefact effects. Finally, data-driven models are highly dependent on the database used, so 
it is difficult to estimate whether the results obtained are generalizable. In addition, finding metrics to tell whether a 
simulation output is realistic or not is a tricky subject.  

This task feeds forward to T3.4 which will be to propose a validation of the physic based and data driven models. 

This will enable a proper comparison of these two different and complementary approaches. 

  

 

2 https://github.com/roadview-project/data-driven-noise-models 
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