

Robust Automated Driving in Extreme Weather

Project No. 101069576

Deliverable 9.5 Interim impact report

WP9 - Communication, dissemination and exploitation

Authors	Julia Goetz (accelCH)
Lead participant	accelCH
Delivery date	27/08/2025
Dissemination level	Public
Туре	Report

Version 01

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them. Project grant no. 101069576.

Title Interim impact report

Revision history

Author(s)	Description	Date
Julia Goetz (accelCH)	Draft deliverable	22/07/2025
Project partners	Input on activities, revision 1	11/08/2025
Julia Goetz (accelCH)	Revision 2	14/08/2025
Johannes Ripperger (accelCH)	Revision 3	18/08/2025
Eren Erdal Aksoy (HH), Juha Hyyppä (FGI)	Final review	21/08/2025
Julia Goetz (accelCH)	Final version	27/08/2025

Contents

Partner short names	4
Abbreviations	4
1 Introduction	5
2 Monitoring and evaluation	5
3 Activities and assessment	7
3.1 Communication	7
3.1.1 Project website	7
3.1.2 Social media	9
3.1.3 Content materials	10
3.1.4 Communication materials	12
3.1.5 Audio-visual	13
3.2 Dissemination	14
3.2.1 Scientific publications	14
3.2.2 Conferences	17
3.2.3 Webinar series	19
3.2.4 CCAM clustering activities	20
3.2.5 Policy brief	21
4 Conclusions	22
List of figures Figure 1: Screenshots of the ROADVIEW website on various screen sizes	
List of tables Table 1: ROADVIEW assessment strategy Table 2: ROADVIEW peer-reviewed publications and pre-prints Table 3: ROADVIEW participation in scientific conferences and events	14 17
Table 4: ROADVIEW participation in other events, workshops and meetings	18

Partner short names

НН	Hogskolan Halmstad
LUA	Lapin Ammattikorkeakoulu OY
THI	Technische Hochschule Ingolstadt
VTI	Statens Vag- och Transportforskningsinstitut
CE	Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement
RISE	RISE Research Institutes of Sweden AB
FGI	Maanmittauslaitos – Finnish Geospatial Research Institute
Repli5	Repli5 AB
S4	Sensible 4 OY
КО	Konrad GmbH
FORD	Ford Otomotiv Sanayi Arnonim Sirketi
CRF	Canon Research Centre France
accelCH	accelopment Schweiz AG
WMG	The University of Warwick

Abbreviations

Al	Artificial Intelligence
AV	Automated Vehicles
CAV	Connected and Automated Vehicle
CCAM	Connected Cooperative and Automated Mobility
CINEA	European Climate, Infrastructure and Environment Executive Agency
D	Deliverable
DISCOcockpit [®]	Dissemination and Communication cockpit
DoA	Description of Action
EU	European Union
KPI	Key Performance Indicator
PDC	Plan for the Dissemination and Communication activities
WP	Work Package

Title Interim impact report

1 Introduction

Dissemination and communication are key components of the ROADVIEW project, ensuring that project activities and results are effectively shared with relevant stakeholders in a clear, consistent, and impactful manner. Through targeted communication efforts that promote the project and its outcomes, as well as dissemination activities that make project results publicly accessible and available for further use, ROADVIEW is successfully enhancing its reach and impact across stakeholder groups. Outreach activities, as outlined in ROADVIEW's Plan for the Dissemination and Communication activities (PDC), are being carried out by all project partners as part of WP9, which is led by accelCH.

The overarching purpose of WP9 is to maximise the project's impact by ensuring effective communication, dissemination, and exploitation of the project and its outcomes. Specifically, WP9 aims to:

Define the project stakeholders, including their needs, expectations, and influence on the project.

- Deliver cross-media communication activities to raise awareness of the importance of intelligent transport systems for connected automated mobility.
- Plan and implement stakeholder-oriented dissemination measures to spread the ROADVIEW results to the scientific community, policy makers, industry, and relevant market sectors and application areas.
- Develop exploitation strategies and measures through continuous innovation management to facilitate future commercial and non-commercial use of the ROADVIEW results

This deliverable documents all the communication and dissemination activities implemented during the first three years of the project and evaluates the activities based on predetermined KPIs defined in the PDC to assess the effectiveness and impact of all activities. Where activities have not reached our expected evaluation metrics, we will assess if the strategy and implementation need to be adapted to ensure our measures maximise the outreach and impact of the project and its outcomes.

2 Monitoring and evaluation

The monitoring and evaluation metrics defined for ROADVIEW outreach measures consider both the quantitative and qualitative aspects of communication and dissemination activities. While measuring the number of engagements with target groups provides useful insights, true effectiveness can only be evaluated when combined with qualitative assessments, such as increased awareness and changes in attitudes towards the ROADVIEW project and its innovations.

To monitor communication and dissemination activities and ensure that the consortium is effectively reaching the intended target groups, a multi-faceted approach is applied:

- ✓ All partners update the ROADVIEW Communication and Dissemination Tracking file with implemented actions. This file is accessible on a secure online platform for document sharing within the consortium.
- accelCH continuously monitors the performance of online communication channels and collects updates from all partners.
- accelCH and HH collect information on planned activities, specifically on planned publications to ensure alignment with the overall strategy.
- Regular meetings (monthly Executive Board and in-person General Assemblies) provide a platform for all partners to share information, discuss planned activities, and coordinate efforts.
- accelCH presents current status at in-person meetings (annual General Assemblies) to ensure all partners are aware of their upcoming activities within WP9.

The incoming information on activities from partners is communicated via the <u>ROADVIEW website</u> as news texts and shared via social media. Additionally, the measures are documented and evaluated during reporting periods, as outlined in the project's dissemination and communication framework (see D9.2 PDC). To enable timely adaptive measures, accelCH also monitors the performance of communication and dissemination activities on an ongoing basis, ensuring continuous improvement and impact maximisation.

Key performance indicators (KPIs) to measure the impact of outreach activities play a crucial role in guiding the implementation of the ROADVIEW PDC. Table 1 below provides an overview of the defined KPIs and the planned evaluation of ROADVIEW communication and dissemination activities, as outlined in D9.2.

Deliverable No. D9.5 Version 01

Project No. 101069576

Title Interim impact report

Table 1: ROADVIEW assessment strategy.

Status	Activity	KPI	Method	Target
√ Ongoing	Project website	Number of visitors Average session duration	Website metrics (Google analytics)	6.000+ visitors per year, increased number of visitors over time, increased duration of each session
√ Ongoing	LinkedIn & Twitter	Number of followers Number of posts/tweets Number of comments Number of shares	LinkedIn and Twitter account metrics	200 followers (cumulative)
√ Ongoing	YouTube	Number of videos Number of views	YouTube account metrics	3.000 views (cumulative)
✓ Ongoing	Press Releases	Numbers of articles created Uptake by the media	News entries on the website	2+ Press releases
√ Ongoing	Website news/ articles	Number of news articles published / Traffic on the news page	News entries on the website	At least 1 article every 2/3 months (16+ in total)
√ Ongoing	Roll-up banner & poster	Use of a poster and roll-up banner at presentations and events	Partner feedback Number of prints	1 roll-up banner 1 poster Materials used in min. 3 events
√ Ongoing	Brochure, flyer, and factsheet	Number of distributions	Partner feedback Number of prints Downloads from website	150+ distributed copies of each material 150+ copies download from the website
① Not started	Open Science and Innovation Days	Number of participants Number of events where the ROADVIEW project is presented	Number of participants and their feedback	1-2 events/year 50-100 visitors
√ Ongoing	Publications in Journals	Number of publications Impact factor and h-index	Journals Feedback	10 peer reviewed publications min. 1 contribution to popular science journals/year
√ Ongoing	Conference Participation	Audience Feedback Number of conference contributions	Feedback Number of participations	Minimum 15 presentations at project relevant events
√ Ongoing	The ROADVIEW webinar series	Audience Feedback Number of webinars Number of registrations Number of participants	Feedback SurveyMonkey/ Google form metrics	Minimum 5 webinars
√ Ongoing	Event participation	Number of registrations Number of participants Number of events Participants' feedback	Feedback SurveyMonkey/ Google form metrics	5 to 10 event participations throughout the project 50/100 participants

A key aspect of the evaluation process is establishing feedback loops to reassess and adjust activities and approaches when targets are not met. The primary goal of evaluating dissemination activities is to ensure that all partners and stakeholders are informed about the project's results and that dissemination efforts are appropriately tailored to the intended audiences. While the objective is to gather as much positive feedback as possible, negative feedback is also valuable, as it can highlight potential limitations and provide insights that help refine strategies to maximise the project's overall impact.

3 Activities and assessment

The communication and dissemination activities planned in ROADVIEW are crucial to promote research results and gather awareness for a digital solution patient-centred care pathways among a variety of audiences.

In this section, we assess the project's varied range of communication (Section 3.1) and dissemination activities (Section 3.2). Those activities implemented to date are covered below, whereas those that have yet to start will be described in the final periodic report.

3.1 Communication

Communication is a strategic process that runs throughout the project's duration, aimed at promoting ROADVIEW to diverse audiences and the wider society. Its primary focus is to inform stakeholders about the project and its achievements while enhancing its visibility while following the <u>European Commission's guidelines</u> on how to communicate about EU-funded projects.

All planned communication activities are designed to raise awareness of ROADVIEW and its outcomes while establishing a strong network that can support future engagement efforts. This foundation will, in turn, facilitate and accelerate the dissemination and exploitation of project results, ultimately broadening the project's reach and impact.

3.1.1 Project website

The ROADVIEW website (https://roadview-project.eu) was launched in 2022 and serves as the key communication channel to raise awareness of the project's achievements. It works as the central online portal to disseminate the project results to the scientific community and communicate outcomes to the general public and wider non-expert audiences.

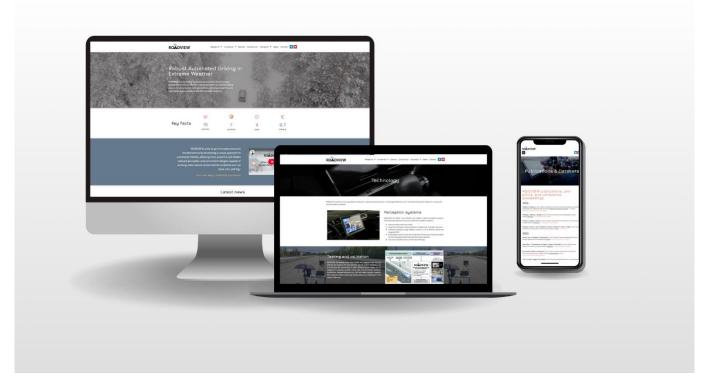


Figure 1: Screenshots of the ROADVIEW website on various screen sizes.

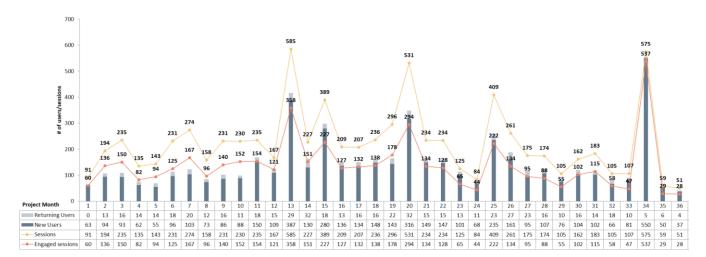


Figure 2: ROADVIEW website online statistics.

Assessment:

The impact and reach of the website are monitored via Google Analytics which are extracted and evaluated every three months. The numbers of visitors and sessions have remained overall steady (Figure 2). In total, since the website has been first launched there have been 4,816 users, 7,940 sessions and 14,883 pages views. The most viewed pages over the whole duration are the Homepage (6,63 views), Consortium (1,406 views), News (667 views), Events (363 views) and Technology (337 views). The average duration of a user's stay on the website is under a minute which shows there is potential for improvement by offering information more relevant for the audience. A substantial number of visitors to the ROADVIEW website as well as a peak in the number of sessions can be seen in months 13, 20 and 34. These align with the first two ROADVIEW webinars (see section 3.2.3), and partners' contributions and scientific conferences and events.

This shows that regularly implemented changes and updates have maintained traffic on the ROADVIEW website with a continuously high number of new users visiting the page. To further increase traffic on the website which in turn creates more awareness and interest for the project we will continue to create new content related to new results and outcomes which will be implemented over the next reporting period to further increase the number of users and pages viewed.

3.1.2 Social media

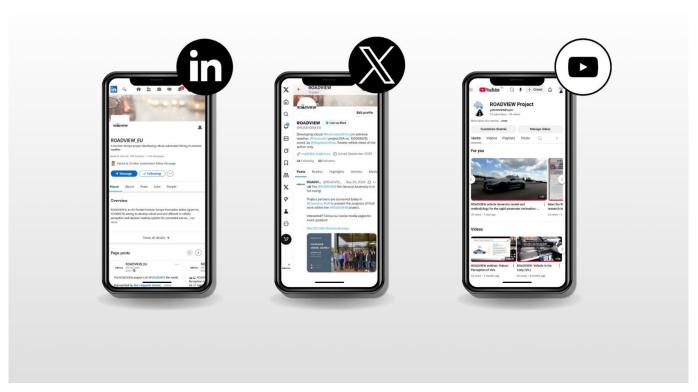


Figure 3: ROADVIEW social media channels.

The ROADVIEW project uses the most popular social networks, <u>LinkedIn</u>, <u>X</u> (formerly Twitter), and <u>YouTube</u>, which are easily accessible via common search engines or through the project website. These_were set up at the_beginning of the project and have been continuously updated by accelCH with the contribution of all partners. ROADVIEW social media thorough communication underlines the consortium's ambition to ensure public awareness and support for the development of multi-sensor systems for autonomous driving in harsh weather conditions, while also ensuring industry interest and uptake in the market.

Several specially tailored social media campaigns have been envisioned and shared – or are being shared – on the ROADVIEW social media channels, including <u>#meetthepartners</u> and <u>#meettheresearchers</u> to present the ROADVIEW consortium partners and the pioneers behind our project.

Assessment:

The ROADVIEW X, LinkedIn and YouTube accounts are regularly monitored using each platform's built-in analytics tools and evaluated on a quarterly basis. Since the project's start, X has gained 53 followers, with 75 posts generating 6875 impressions, 129 likes and 53 retweets. Meanwhile, the LinkedIn page has steadily grown its audience and currently has 630 followers generating over 63,000 impressions, 2,179 reactions and 71 reposts, contributing to increased visibility among professionals and stakeholders.

Based on these results, it is clear that LinkedIn offers the greatest potential for amplifying ROADVIEW's outreach and should therefore be prioritised as the primary platform for future communication and dissemination efforts.

3.1.3 Content materials

Website news articles: To further keep stakeholders up to date on new outcomes, publications, materials and events, ROADVIEW regularly posts shorter news pieces to the project website. The aim of the news texts is to keep different target audiences informed that the project is moving forward and to increase interest and retention on the website (i.e., regular visits to the page). To date, ROADVIEW has published 27 news articles on the project website and the news page has been viewed a total of 667 times. The most viewed new articles on the website are:

- The ROADVIEW journey begins: A summary of the kick-off meeting (October 13, 2022, 66 views)
- First ROADVIEW kick-off meeting held (September 22, 2022, 62 views)
- FrostBit visits CARISSMA outdoor test facility (November 14, 2022, 51 views)
- ROADVIEW makes a leap forward after its second General Assembly (March 14, 2023, 49 views)

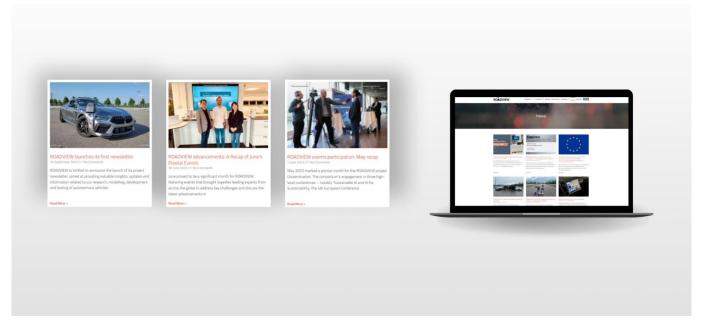


Figure 4: Screenshots of the ROADVIEW news area.

Media articles: the project has been featured on different occasions in local newspapers and media outlets in local languages, via various news articles introducing the project, its objectives and ambitions.

- 1. Så kan svenska städer bli mer hållbara med Al (3/05/2023, Sweden)
- 2. <u>EU-möte om Al:s roll med grön omställning</u> (04/05/2023, Sweden)
- 3. Talvella tutkitaan itseohjautuvia autoja haastavissa sääolosuhteissa (15/11/2023, Finland)
- 4. Suomen presidenttipeli kiihtyy miten kampanjointi sujuu? (15/11/2023, Finland)
- 5. Kunnon loska innostaa robottiauton kehittäjiä katso videolta (15/11/2023, Finland)
- 6. <u>Suomen teillä ajaa tänä talvena robottiauto Näin se opetetaan varomaan mustaa jäätä</u> (15/11/2023, Finland)
- 7. <u>Tämä auto ajaa seuraavat kuukaudet pitkin Suomen loskaisia ja jäisiä teitä Kuskia sillä ei ole lainkaan", Talouselämä (15/11/2023, Finland)</u>
- 8. Robottiauto ajaa tänä talvena pitkin Suomen loskaisia ja jäisiä teitä Huonot ajokelit ovat eduksi, kun on opittava liukkaiden kohtien tunnistusta (15/11/2023, Finland)
- 9. <u>Suomen teillä kurvailee tänä talvena robottiauto Tästä syystä huonot ajokelit ovat eduksi</u> (15/11/2023, Finland)
- 10. Itseajava auto voi tunnistaa pian tien liukkaat kohdat (17/11/2023, Finland)
- 11. Robottiauto voi pian tunnistaa tien liukkaat kohdat! (20/11/2023, Finland)
- 12. Tufft väder en utmaning för självkörande fordon (18/12/2023, Sweden)
- 13. <u>Al i självkörande bilar kan stoppa trafikkaos vid snöoväder ny forskning på Högskolan i Halmstad</u> (20/01/2024, Sweden)
- 14. ID4Mobility REX Projet: PROJET ROADVIEW: Conduite autonome robuste dans des conditions météorologiques extrêmes.(26/03/2025, France)

ROADVIEW newsletter: An electronic newsletter was developed to support the consortium in creating a network of interested stakeholders and distributing project outcomes. Following the plan of distributing the newsletter twice per year, the first issue was launched in September 2023, the second in February 2024 and the third issue followed in December 2024. Alongside regular updates on the project's latest news, events and outcomes, the newsletters also include articles on a specific theme relevant to the project. All the content has been shared on the project website and it is accessible through the news-section, as well as the project's social media pages. The newsletter has been also shared via email to a list of subscribers, which counts approximately 40 actively interested stakeholders from the project, and reached over 3,000 impressions on social media.

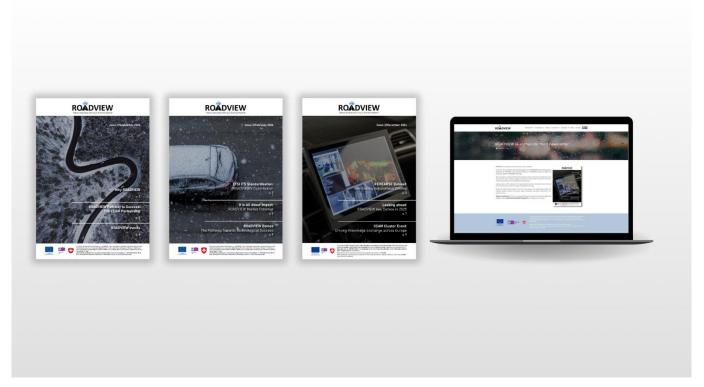


Figure 5: ROADVIEW Newsletter issues published to date.

Assessment:

The ROADVIEW news articles, media features, and newsletters have played a key role in increasing the project's visibility and engaging diverse stakeholders. Regular website updates keep audiences informed of progress and encourage repeat visits, while media coverage in Sweden, Finland, and France has extended outreach to new audiences and showcased the project's real-world testing and results. The biannual newsletter further supports stakeholder engagement by combining project updates with thematic articles, shared both via direct mailing and social media, helping to maintain interest and strengthen the project's profile throughout its implementation.

Overall, content materials have been successfully used to communicate about the project and its results. Moving forward, new content materials will be considered to maximise the impact of the information shared.

3.1.4 Communication materials

To maximise engagement with various stakeholders, it is essential to present ROADVIEW through a range of content formats and levels of complexity. Since the project's start, a variety of print and visual materials have been developed to introduce the project's objectives and key messages. These materials are publicly accessible on the ROADVIEW website's media page and available in the password-protected member's area in a printer-ready format, ensuring broad dissemination and visibility.

In terms of print materials, two versions of the roll-up banner and one flyer have been created, printed, and distributed/showcased during different in-person events. The materials are also available on the project website via the dedicated page. The print materials summarise key information about the project straightforwardly, while including a call to action referring the interlocutor to learn more about the project via the ROADVIEW website and social media platforms.

To date, two versions of the roll-up banner have been designed and used at least at 5 events by project partners. Additionally, 200 copies of the ROADVIEW flyer were printed and distributed by partners at different national and international events.

Figure 6: ROADVIEW communication materials.

Assessment:

According to the website's Google Analytics, the <u>media page</u> where all materials are made available has received 326 views. In addition to the printed versions of the materials which were used and distributed at in person events, the roll-up has been downloaded from the project website 28 times, the flyer 50 times, the factsheet 42 times and the infographic 65 times to date. The explainer video has been viewed 95 times on YouTube.

The visual and audio-visual materials have a notable impact due to their ability to distil intricate data and concepts into visually appealing and easy to follow format. By presenting information through a combination of text, visuals, audio, video and design elements, the materials make it easier for the audience to grasp key points quickly. Additionally, sharing on social media platforms extends its reach and impact contributing to more accessible and engaging communication, fostering a deeper understanding of complex topics and driving meaningful engagement with the audience.

3.1.5 Audio-visual

Multimedia materials such as <u>videos</u>, including an <u>introduction video</u>, <u>partner videos</u>, and <u>videos from the testing locations</u>. A diverse range of audio-visual materials has been produced to support the ROADVIEW project's communication and outreach efforts. These include an <u>introduction video</u>, <u>partner videos</u> and <u>videos from the testing locations</u> and two video reports showcasing collaborative progress, as well as various photographs taken at partner facilities. All visual content is curated on a dedicated page of the ROADVIEW project website and on the ROADVIEW <u>YouTube</u> channel.

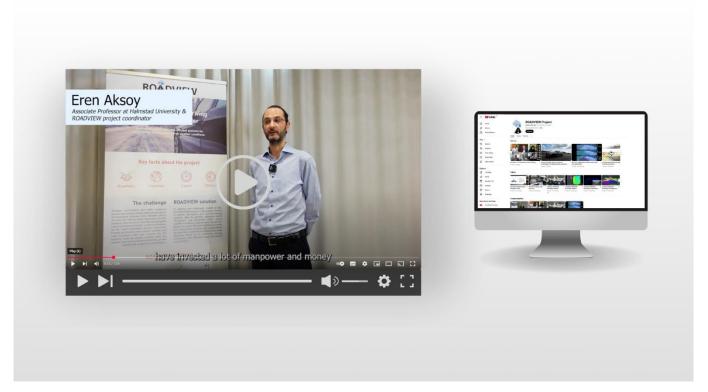


Figure 7: Screenshot from the introduction video and the ROADVIEW YouTube channel.

Assessment:

Thanks to their interactive and accessible format, these materials have significantly enhanced engagement with the project's growing follower community. Overall, the ROADVIEW YouTube channel has uploaded 40 videos leading to 23 subscribers, a total of over 2,600 views and a watch total time of 97.8 hours.

- Introductory Video: One professionally produced video explains the ROADVIEW research concept in layman's terms. As of the reporting date, it has been viewed over 510 times on YouTube, 530 times on LinkedIn, and 190+ times on X, accumulating approximately 1,230 views in total.
- Partner Video Interviews: Nine video interviews introduce the project partners and their respective organisations. These interviews garnered more than 180 views on YouTube, 2,800 views on LinkedIn, and 1,600 views on X, resulting in a combined view count of approximately 4,500.
- Video Reports: Two video reports were created to provide the public with engaging updates on project progress and partner collaboration. These received 20 views on YouTube and around 1,000 views across LinkedIn and X.
- **Demonstration videos**. 24 videos demonstrating the ROADVIEW technologies and testing locations which have received a total of 1,366 views on YouTube.

Overall, audio-visual content has proven to be one of the most effective tools for communicating the project's activities and impact. Looking ahead, additional materials are planned for the demonstration phase, which will further showcase the project's developments and results.

Title Interim impact report

3.2 Dissemination

Dissemination, as outlined in Task 9.3 of the Description of Action (DoA), involves the public disclosure of project results through appropriate channels, excluding activities related to the protection or exploitation of results. Within ROADVIEW, dissemination efforts are designed to transfer knowledge from scientific work packages to relevant stakeholders who can effectively apply it, while also maximising the impact of research beyond its original scope. To achieve these objectives, dissemination activities primarily target the scientific community and the industry, ensuring that project findings contribute to advancements in the AV industry and research field.

3.2.1 Scientific publications

ROADVIEW partners are actively publishing their results through publication in peer-reviewed journals pre-prints, and conference proceedings. The up-to-date list of all Publications is published on the project website's Publications & Datasets.

Table 2: ROADVIEW peer-reviewed publications and pre-prints.

Published	Title	Lead	Repository	Metrics		
Peer-reviewed, open-access publications						
20.02.2023	Sweet: A realistic multiwavelength 3d simulator for automotive perceptive sensors in foggy conditions.	Ben-Daoued, A., Duthon, P., & Bernardin, F.	Journal of Imaging	2,788 views, 9 citations		
20.11.2023	Depth- and semantics-aware multi-modal domain translation: Generating 3D panoramic color images from LiDAR point clouds	Cortinhal, T20.02.2., & Aksoy, E. E.	Elsevier, Robotics and Autonomous Systems	12 views, 3 citations		
29.01.2024	A novel score-based lidar point cloud degradation analysis method	Shahbeigi, S., Robinson, J., & Donzella, V.	IEEE Access	1,162 views, 4 citations		
07.05.2024	Semantics-aware Multi-modal Scene Perception for Autonomous Vehicles ().	Cortinhal, T.	Doctoral dissertation, Halmstad University Press	376 downloads		
29.10.2024	From operational design domain to test cases: A methodology to include harsh weather	Warg, F., Donzella, V., Chan, P. H., Robinson, J., Poledna, Y., Liandrat, S., & Aksoy, E. E.	Open Research Europe	96 views		
25.11.2024	The inconvenient truth of ground truth errors in automotive datasets and DNN-based detection	Chan, P. H., Li, B., Baris, G., Sadiq, Q., & Donzella, V.	Data-Centric Engineering	184 views, 180 downloads		
27.11.2024	A Comparative Review of the SWEET Simulator: Theoretical Verification Against Other Simulators	Ben-Daoued, A., Bernardin, F., & Duthon, P.	Journal of Imaging	948 views		
13.01.2025	Raw camera data object detectors: an optimisation for automotive video processing and transmission	Chan, P. H., Wei, C., Huggett, A., & Donzella, V.	IEEE Access	364 views, 1 citation		
24.02.2025	Automotive DNN based object detection in the presence of lens obstruction and video compression	Baris, G., Li, B., Chan, P. H., Avizzano, C. A., & Donzella, V.	IEEE Access	530 views, 1 citation		
07.04.2025	A noise analysis of 4d radar: robust sensing for automotive?	Chan, P. H., Roudposhti, S. S., Ye, X., & Donzella, V.	IEEE Sensors Journal	235 views		
21.05.2025	LiDAR De-Snow Score (DSS): combining quality and perception metrics for optimised de-noising	Donzella, V., Chan, P. H., Gummadi, D., Raisuddin, A. M., & Aksoy, E. E.	IEEE Sensors Journal	83 views		
09.06.2025	An Experimental Study on ObjectTracking.	Alshaikh, M.	Bachelor thesis, Halmstad University Press	16 downloads		

Deliverable No. D9.5

Version 01 Project No. 101069576 Title Interim impact report

Published	Title	Lead	Repository	Metrics		
Conference	Conference proceeding(s)					
03.02.2023	Simulation numérique de capteurs perceptifs du véhicule autonome sous conditions météorologiques dégradées. In	Daoued, A. B., Bernardin, F., & Duthon, P.	ATEC France	121 views, 130 downloads		
12.02.2024	Synthetic extreme weather for ai training: Concept and validation	Silva, L. C. D., Drechsler, M. F., Poledna, Y., Huber, W., & Fiorentin, T. A.	2023 Third International Conference on Digital Data Processing (DDP)	153 views, 3 citations		
13.02.2024	The effect of camera data degradation factors on panoptic segmentation for automated driving	Wang, Y., Zhao, H., Debattista, K., & Donzella, V.	2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)	211 views, 3 citations		
15.07.2024	3D-OutDet: A fast and memory efficient outlier detector for 3d lidar point clouds in adverse weather	Raisuddin, A. M., Cortinhal, T., Holmblad, J., & Aksoy, E. E.	2024 IEEE Intelligent Vehicles Symposium (IV)	338 views, 5 citations		
15.07.2024	Rehearse: adverse weather dataset for sensory noise models	Poledna, Y., Drechsler, M. F., Donzella, V., Chan, P. H., Duthon, P., & Huber, W.	2024 IEEE Intelligent Vehicles Symposium (IV)	245 views, 5 citations		
15.07.2024	Semantics-aware LiDAR-only pseudo point cloud generation for 3D object detection	Cortinhal, T., Gouigah, I., & Aksoy, E. E.	2024 IEEE Intelligent Vehicles Symposium (IV)	276 views, 3 citations		
13.11.2024	Creation of digital models for accelerated and reliable testing of automated systems in adverse weather	Herranen, T., Martí, E. H., Chan, P. H., Poledna, Y., Duthon, P., Ben-Daoued, A., & Donzella, V.	Autonomous Systems for Security and Defence	n/a		
03.12.2024	Dense road surface grip map prediction from multimodal image data	Maanpää, J., Pesonen, J., Hyyti, H., Melekhov, I., Kannala, J., Manninen, P., & Hyyppä, J.	International Conference on Pattern Recognition	1,011 views, 2 citations		
13.12.2024	Vehicle Dynamics Parameter Estimation Methodology for Virtual Automated Driving Testing	Drechsler, M. F., Poledna, Y., Hjort, M., Kharrazi, S., & Huber, W.	2024 IEEE International Automated Vehicle Validation Conference (IAVVC)	196 views, 1 citation		
17.12.2024	Parametric physics-based snow model for automotive cameras.	Chan, P. H., Debattista, K., & Donzella, V.	2024 IEEE SENSORS	49 views, 1 citation		
16.06.2025	Road Grip Uncertainty Estimation Through Surface State Segmentation.	Maanpää, J., Pesonen, J., Melekhov, I., Hyyti, H., & Hyyppä, J.	Scandinavian Conference on Image Analysis	168 views		
31.06.2025	3d-unoutdet: A fast and efficient unsupervised snow removal algorithm for 3d lidar point clouds	Raisuddin, A. M., Gouigah, I., & Aksoy, E. E.	IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)	n/a		
02.07.2025	On the Trade-off Between Aol Performance and Resource Reuse Efficiency in 5G NR V2X Sidelink	Rolich, A., Yildiz, M., Turcanu, I., Vinel, A., & Baiocchi, A.	2025 IEEE Vehicular Networking Conference (VNC)	33 views		

Deliverable No. D9.5 Version 01

Project No. 101069576

Title Interim impact report

Published	Title	Lead	Repository	Metrics
Pre-print pul	blications			
23.05.2023	Analysis of Faster R-CNN network prediction in the presence of lens occlusion and video compression.	Li, B., Chan, P. H., & Donzella, V.	Authorea Preprints	598 views, 234 downloads
09.10.2023	Pixelwise Road Surface Slipperiness Estimation for Autonomous Driving with Weakly Supervised Learning.	Julius Personen, K.	Aaltodoc Publication Archive	n/a
22.11.2023	Correlating traditional image quality metrics and dnn-based object detection: a case study with compressed camera data	Gummadi, D., Chan, P. H., Wang, H., & Donzella, V.	Authorea Preprints	601 views, 181 downloads
21.01.2025	A Path Toward Bayer Compression for Automotive Applications	Wang, H., Gummadi, D., Huggett, A., Debattista, K., & Donzella, V.	Authorea Preprints	142 views, 68 downloads
11.10.2024	3d-unoutdet: A fast and efficient unsupervised snow removal algorithm for 3d lidar point clouds	Raisuddin, A. M., Gouigah, I., & Aksoy, E. E.	Authorea Preprints.	384 views, 118 downloads
30.04.2025	REHEARSE-3D: Multi-modal Emulated Rain Dataset for 3D Point Cloud De-raining	Raisuddin, A. M., Holmblad, J., Haghighi, H., Poledna, Y., Drechsler, M. F., Donzella, V., & Aksoy, E. E.	arXiv preprint	n/a
05.07.2025	An improved 2D time-to-collision for articulated vehicles: predicting sideswipe and rear-end collisions	Behera, A., Kharrazi, S., Frisk, E., & Aramrattana, M.	arXiv preprint	n/a

Assessment:

The ROADVIEW project has achieved substantial scientific impact through a steady output of peer-reviewed publications, theses, conference proceedings, and preprints, underscoring its role in advancing research on autonomous vehicle perception in adverse conditions. To date, partners have produced 10 peer-reviewed journal articles, 3 theses, 14 conference papers, and 6 preprints, with dissemination supported by open-access repositories to maximise reach. The publications have collectively attracted thousands of views and significant download activity, demonstrating strong interest from the research community and industry stakeholders. High engagement with these outputs, reflected in consistent view counts and notable downloads across publication types, indicates that ROADVIEW's results are not only contributing to the scientific state of the art but are also being actively accessed, referenced, and applied in related research domains. This level of uptake highlights the project's effectiveness in ensuring visibility, accessibility, and early adoption of its findings.

Title Interim impact report

3.2.2 Conferences

Members of the ROADVIEW project participated in several conferences to present their latest progress through oral and poster presentations.

Table 3: ROADVIEW participation in scientific conferences and events

Date	Conference name	Participating org.	Dissemination activity	No. Event participants
18-19.01.2023	ATEC-ITS Congress	CEREMA	Presentation	2000
03-04.05.2023	EUCAD 2023 Conference	RISE	ROADVIEW booth + project pitch	400
22-24.05.2023	15 th ITS European Congress	HH, FGI, S4	Presentation	2500
15.06.2023	Resilient and Robust Sensing for Automated Systems for Transportation conference 2023	WMG	Conference organised by the ROADVIEW partner WMG; presentations	100
24-28. 09.2023	2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC)	WMG	Presentation	-
19.09.2023	AutoSens Brussels	WMG	Presentation	20
27-29.11.2023	Third International Conference on Data Processing	THI	Presentation	60
02-05.06.2024	IEEE Intelligent Vehicles Symposium	HH, CARISSMA,	Presentations	500
16-20.09.2024	Autonomous Systems for Security and Defence	WMG	Presentation	-
20-23.10.2024	2024 IEEE SENSORS	WMG	Presentation	1,000
22-23.10.2024	IEEE International Automated Vehicle Validation Conference (IAVVC)	VTI	Presentation	-
01-05.12.2024	27th International Conference, ICPR 2024	FGI	Presentation	
13.02.2025	RTR Conference	HH	Presentation	500
13-15.05.2025	EUCAD 2025 Conference	THI, CRF	ROADVIEW booth	400
02-04.06.2025	2025 IEEE Vehicular Networking Conference (VNC)	НН	Presentation	-
23-25.06.2025	23rd Scandinavian Conference, SCIA 2025	FGI	Presentation	-
18-22.08.2025	29th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD)	VTI	Presentation	-

Deliverable No. D9.5 Version 01

Project No. 101069576

Title Interim impact report

In addition to conferences, the partners have contributed to other events, workshops, and meetings to promote the project as a whole and to find synergies with other EU projects and researchers.

Table 4: ROADVIEW participation in other events, workshops, and meetings.

Date	Event name	Participating org.	Dissemination activity	Type of activity	No. Event participants
24-25.10.2022	CCAM Multi-Cluster Meeting	HH, S4, RISE, WMG	Presentation, networking	Event (Meeting)	160
02-03.05.2023	Sustainable AI and AI for Sustainability	НН	Presentation + ROADVIEW booth	Event	250
19.06.2023	ROADVIEW – Expert's Insights: Dr Joonwoo Son	НН	Seminar organised by the ROADVIEW partner HH	Event (Seminar)	50
19.06.2023	CVRP Workshop	НН	Presentation	Event (Workshop)	50
08.11.2023	Car 2 Car	НН	Presentation	Event (Forum)	65
16.11.2023	Presentation to ETSI ITS Standardisation Working Group of ROADVIEW Use Case (ITSWG1(23)000260)	CRF, VTT	Presentation	Other	14
04.03.2024	Network Autonomous Driving Regulations	HH, VTI	Presentation	Meeting	30
01.07.2024	FORUM 2024 MOBILITIES TRANSITIONS	CRF	ROADVIEW booth + live demonstration	Event	800
18.09.2024	R&S Automotive Radar Symposium 2024	RISE	Presentation	Event (Seminar)	50
20.10.2024	IEEE SENSORS 2024	HH, WMG	Presentation	Workshop	50

Assessment:

Members of the ROADVIEW consortium have been highly active in disseminating project results through participation in major international and European conferences. To date, partners have reported at least 17 contributions to conferences and 10 contributions at other events, workshops and meetings, including oral presentations, poster sessions, booths, and pitches.

The project has had visibility at key intelligent transport and automated driving events such as the ITS European Congress, IEEE Intelligent Vehicles Symposium, IEEE SENSORS, and the ICPR conference. These venues attract large and diverse audiences from academia, industry, and policymaking, enabling ROADVIEW to reach target stakeholders across sectors.

Participation has not only showcased technical progress but has also strengthened the project's positioning in the connected and automated mobility community. ROADVIEW partners have been able to network with decision-makers, foster collaborations, and gain feedback from peers. This active engagement in conferences and other events has been key in building recognition for ROADVIEW and in preparing the ground for the uptake and exploitation of its results in the coming project phases.

3.2.3 Webinar series

Under the guidance of HH and with the support of accelCH, the project partners have launched the ROADVIEW webinar series, a recurring programme of interactive sessions featuring leading experts in autonomous vehicles (AV) alongside project representatives. These webinars aim to present the project's latest results and demonstrate their potential impact on end users, the automotive industry, policymakers, and other key stakeholders. In addition to sharing outcomes, the sessions provide a platform to collect valuable feedback from both subject matter experts and targeted audience groups, ensuring that the project remains relevant, impactful, and aligned with stakeholder needs.

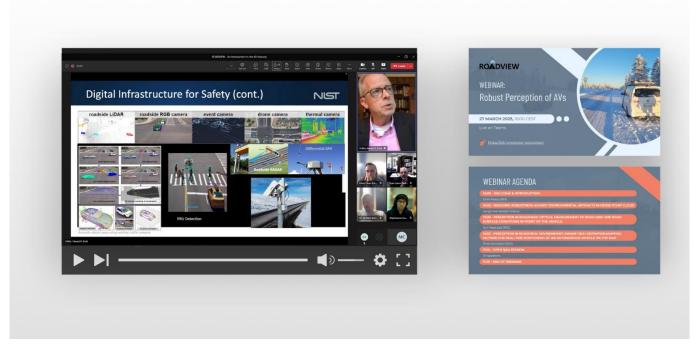


Figure 8: Screenshot from the webinar and social media promotional materials.

To date, three webinars in the ROADVIEW series have been successfully delivered, attracting strong participation and continued interest from the autonomous vehicle (AV) community. The sessions, An Introduction to the AV Industry (02 October 2023), Standardisation & the Regulatory Framework (19 April 2024), and Robust Perception of AVs (27 March 2025).

Title	An introduction to the AV industry	Standardisation & the Regulatory Framework	Robust Perception of AVs
Date	2 October 2023	19 April 2024	27 March 2025
Registrants	80	88	55
Attendees	66	89	54
Video views	67	80	58

Assessment:

The three webinars drew between 54 and 89 live attendees each, with additional views of the recordings ranging from 58 to 80 views. This consistent engagement has contributed to raising awareness of the project's objectives and results among key stakeholder groups, fostering dialogue with industry and AV experts. In the context of the ROADVIEW project, the topical webinars have provided a valuable platform for sharing insights on AV technologies and related developments. By focusing each session on a specific theme and inviting both project partners and external experts, the series ensures that content is relevant, timely, and aligned with stakeholder interests. The opportunity for participants to ask questions during the live sessions encourages active dialogue and clarifies complex aspects of the project's work. Given the positive feedback and number of participants, further webinars are planned for the remainder of the ROADVIEW project.

3.2.4 CCAM clustering activities

ROADVIEW actively contributes to several Connected, Cooperative and Automated Mobility (CCAM) cluster activities, reinforcing its role in the European research and innovation landscape. Two notable contributions include the Online CCAM Cluster Event in September 2024 and the CCAM Multi-Cluster Meeting in October 2022.

Figure 9: Photos from the CCAM Multi-Cluster Meeting and Online CCAM Cluster Event.

The **Online CCAM Cluster Event** took place on 24 September 2024 and was organised by ROADVIEW partners HH and accelCH, in cooperation with the CCAM Partnership. Other CCAM projects, including AI-SEE, AWARD, EVENTS, IN2CCAM, and PoDIUM, also contributed to the event. The aim of this online gathering was to bring together ROADVIEW, the CCAM Partnership, and other relevant EU projects as main speakers alongside representatives from industry and the broader scientific community. Over 50 participants joined the online event. The recording has been published on the project website and YouTube where it has received 70 views. The purpose was to address CCAM-related challenges, explore opportunities, and encourage the exchange of knowledge within the CCAM community. The event was intended as a hub for interdisciplinary collaboration, networking, and idea-sharing, while also showcasing the EU's commitment to advancing CCAM mobility solutions.

ROADVIEW also played an active role in the **CCAM Multi-Cluster Meeting**, held on 24–25 October 2022. This meeting brought together 160 participants from industry, research, and public authorities to prepare for the review of the CCAM Strategic Research and Innovation Agenda (SRIA). The SRIA connects the CCAM Partnership's vision for safe and sustainable road transport automation with concrete research and innovation activities and defines priorities for the Horizon Europe Work Programmes. From the ROADVIEW consortium, partners Sensible 4, RISE, and the University of Warwick participated, while the coordinator, Eren Aksoy (HH), was invited to present the project. His presentation outlined ROADVIEW's objectives and its alignment with Cluster 2: Vehicle Technologies.

Assessment:

Networking and clustering with the CCAM Partnership and other EU projects is essential for maximising the impact of research and innovation in automated mobility. By bringing together diverse stakeholders from industry, academia, and public authorities, these activities foster collaboration, knowledge exchange and alignment of efforts towards common goals. CCAM clustering activities create opportunities for ROADIVEW to address shared challenges, accelerate technological development, and ensure that innovations are compatible with EU regulations and needs. For ROADVIEW, active participation in such networks not only enhances visibility and credibility but also opens pathways for joint initiatives, resource sharing, and faster adoption of solutions, ultimately contributing to safer, more sustainable, and more competitive European mobility systems.

3.2.5 Policy brief

The ROADVIEW project has published a <u>policy brief</u> that addresses the deployment of Connected and Automated Vehicles (CAVs) under challenging weather conditions. Developed collaboratively with all project partners, the brief outlines the current policy landscape and identifies the regulatory and technical barriers hindering the adoption of weather-resilient CAV technologies across the European Union.

The policy brief published in March 2025 proposes a series of actionable recommendations to support policymakers and stakeholders in advancing CAV deployment across Europe:

- Development of a harmonised European framework for CAV testing and approval procedures
- Clarification and standardisation of liability regimes for CAV operations
- Assurance of transparency and legal compliance of AI systems under the EU AI Act
- Reconciliation of data privacy and security needs with the General Data Protection Regulation (GDPR)
- Introduction of a hybrid EU-wide methodology for CAV validation in adverse weather conditions
- Enhancement of Vehicle-to-Everything (V2X) communication standards to improve performance in harsh environments

Figure 10: ROADVIEW Policy brief.

Assessment:

Although the policy brief's direct online engagement included 16 views and seven downloads from the project website, its dissemination via LinkedIn significantly expanded its reach, generating 22 likes, four reposts, and 688 impressions. This broader visibility has helped position ROADVIEW as a proactive voice in shaping the regulatory and technical environment for CAVs, reinforcing the project's role in supporting EU mobility innovation and informing strategic decision-making at both national and European levels.

The recommendations aim to foster a unified regulatory approach that enables the safe, equitable, and efficient integration of CAVs into Europe's mobility systems. Addressing these policy gaps is essential to strengthen Europe's position as a global leader in smart and sustainable transport, particularly in the context of climate resilience and road safety.

Title Interim impact report

4 Conclusions

During its first three years, the ROADVIEW project has made significant progress in delivering targeted, multi-channel communication and dissemination activities that have strengthened its visibility, stakeholder engagement, and scientific impact. The coordinated approach outlined in the Communication and Dissemination Plan has enabled partners to promote project objectives and results across diverse audiences, from the scientific community and industry to policymakers and the general public.

By maintaining a strong presence at leading international conferences, specialised workshops, and key CCAM clustering activities, ROADVIEW has established a presence in the field of robust perception and autonomous driving in adverse weather conditions. Scientific publications, both peer-reviewed and in conference proceedings, have ensured that results are contributing to and shaping the state of the art, while the project's social media channels, website, newsletters, and tailored communication materials have expanded outreach beyond the research domain.

Continuous monitoring against KPIs has allowed the consortium to assess both the quantitative reach and the qualitative impact of these activities, ensuring that dissemination remains aligned with project objectives and stakeholder needs.

Overall, ROADVIEW's outreach to date has created a solid foundation for the exploitation of results in the coming phases. The project has fostered connections within the CCAM community, increased awareness of the challenges and opportunities in weather-resilient autonomous mobility, and opened pathways for collaboration that will support the long-term uptake and societal impact of its innovations.